n介方阵A可以对角化,那么该对角阵一定是由A的特征值构成的吗?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:55:41
n介方阵A可以对角化,那么该对角阵一定是由A的特征值构成的吗?
如何证明
如何证明
若n阶方阵A可相似对角化为对角阵diag{d1,d2,...,dn},
则d1,d2,...,dn就是A的n个特征值.
如果使用基本结论,易见可以用下面两个结论证明这一点:
1) 相似矩阵有相同的特征多项式,进而所有的特征值也都相同.
2) 对角阵的n个特征值就是其对角元.
这两个结论都不难证明:
1) 若A与B相似,则存在可逆矩阵P,使P^(-1)AP = B.
于是B的特征多项式|λE-B| = |λE-P^(-1)AP| = |P^(-1)(λE-A)P| = |P^(-1)|·|λE-A|·|P| = |λE-A|.
即二者特征多项式相同,进而特征值作为特征多项式的根也都相同.
2) 设对角阵D = diag{d1,d2,...,dn},则λE-D也是对角阵,可得:
特征多项式|λE-D| = (λ-d1)(λ-d2)...(λ-dn),于是特征值就是d1,d2,...,dn.
实际上,也可以直接从特征值特征向量的定义证明这一点:
设可逆矩阵P可使P^(-1)AP = diag{d1,d2,...,dn},即有AP = P·diag{d1,d2,...,dn}.
设P的n个列向量依次为X1,X2,...,Xn,即P可分块表示为[X1,X2,...,Xn].
可算得AP = [AX1,AX2,...,AXn],而P·diag{d1,d2,...,dn} = [d1X1,d2X2,...,dnXn].
比较两边即得AXi = diXi,对i = 1,2,...,n成立.
又P可逆,任意Xi均不为零向量,故Xi是属于特征值di的特征向量,di都是A的特征值.
则d1,d2,...,dn就是A的n个特征值.
如果使用基本结论,易见可以用下面两个结论证明这一点:
1) 相似矩阵有相同的特征多项式,进而所有的特征值也都相同.
2) 对角阵的n个特征值就是其对角元.
这两个结论都不难证明:
1) 若A与B相似,则存在可逆矩阵P,使P^(-1)AP = B.
于是B的特征多项式|λE-B| = |λE-P^(-1)AP| = |P^(-1)(λE-A)P| = |P^(-1)|·|λE-A|·|P| = |λE-A|.
即二者特征多项式相同,进而特征值作为特征多项式的根也都相同.
2) 设对角阵D = diag{d1,d2,...,dn},则λE-D也是对角阵,可得:
特征多项式|λE-D| = (λ-d1)(λ-d2)...(λ-dn),于是特征值就是d1,d2,...,dn.
实际上,也可以直接从特征值特征向量的定义证明这一点:
设可逆矩阵P可使P^(-1)AP = diag{d1,d2,...,dn},即有AP = P·diag{d1,d2,...,dn}.
设P的n个列向量依次为X1,X2,...,Xn,即P可分块表示为[X1,X2,...,Xn].
可算得AP = [AX1,AX2,...,AXn],而P·diag{d1,d2,...,dn} = [d1X1,d2X2,...,dnXn].
比较两边即得AXi = diXi,对i = 1,2,...,n成立.
又P可逆,任意Xi均不为零向量,故Xi是属于特征值di的特征向量,di都是A的特征值.
对称矩阵对角化后得到的对角矩阵由原对称矩阵的特征值构成
请问老师:n阶方阵A的k次方为单位阵,k为正整数,则A一定可以对角化吗?怎么证明?
一个方阵不可以对角化,那么他的秩一定不等于非0特征值的个数吗
n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件.
n阶方阵A有n个不同特征值是A与对角阵相似的什么条件?
相似对角化与相似正交对角化(其他不变)得到的对角矩阵是否是同一个对角矩阵 (是否只与A本身特征值有关)
n阶矩阵A的n个特征值互不相同是A可以对角化的充分条件?
矩阵AB=BA,A可相似对角化,那么B可以相似对角化吗?A和B的特征值、特征向量相同吗?
设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...
老师 请问矩阵A的平方等于A 那么它一定可以相似对角化吗.
实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出
若n阶矩阵A的n个特征值都相等,且A可对角化,则A一定是数量矩阵