用反正法推是如果当x→x0时f(x)+g(x)的极限存在,则[f(x)+g(x)]–f(x)=g(x)的极限存在,即g(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:51:11
用反正法推是如果当x→x0时f(x)+g(x)的极限存在,则[f(x)+g(x)]–f(x)=g(x)的极限存在,即g(x)的极限存在.只是答案表面意思看懂了,但是这用的什么原理,深层的意思是什么,只是照葫芦画瓢下次遇到这种题型又不会了,感激不尽
如果f(x)+g(x)的极限存在,又由f(x)的极限存在,可以推得:
lim g(x)=lim (f(x)+g(x)-f(x))=lim (f(x)+g(x)) - lim f(x) 存在,矛盾
这里用到了如果两个函数的极限分别存在,那么两函数和(差)的极限等于两函数极限的和(差)
再问: 非常谢谢!!!闷了好几天了
lim g(x)=lim (f(x)+g(x)-f(x))=lim (f(x)+g(x)) - lim f(x) 存在,矛盾
这里用到了如果两个函数的极限分别存在,那么两函数和(差)的极限等于两函数极限的和(差)
再问: 非常谢谢!!!闷了好几天了
F(X)和F(X)*G(X)的极限都存在,问G(X)极限是否存在
请举例:如果f(x)的极限存在,[f(x)+g(x)]的极限也存在,那么g(x)的极限是否也必须存在?
lim x趋于2 f(x),g(x) 极限不存在 但f(x)+g(x)极限存在的例子
如果lim[f(x)+g(x)]的极限存在且lim[g(x)]的极限也存在,能否说明lim[f(x)]也存在?
高数函数极限当x→0时,f(x)和g(x)极限都不存在,但f(x)g(x)极限存在,举出满足条件的例子
自变量的同一变化过程中,若f(x)的极限存在,g(x)无极限,那么f(x)+g(x)是否有极限?
f(x)=sin[(sinx)^2],g(x)=3x^2+4x^3,求当x趋近于0时,f(x)/g(x)的极限
求f(x)=x/x.g(x)=|x|/x.当x趋于0时的左,右极限,并说明它们在x趋于0时的极限是否存在.
导数定义求极限设f'(x0)存在,求当x→0时f(x)/x的极限,其中f(0)=0,且f(0)存在
求证明:设f(x)x趋近x0时的极限为A,g(x)x趋近x0时的极限为B,当A>B时,在x0的某个去心邻域内f(x)>g
函数f(x)当x→x0时极限存在的充要条件是
函数极限存在在x趋向正无穷时,已知函数f(x)的极限存在,为常数C有 f(x)=g(x)/h(x)其中 h(x)的极限为