等比数列an的各项均为正数,(2a4),(a3),(4a5)成等差数列,且a3=2a2^2:(1)求数列an的)求数列a
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 11:11:07
等比数列an的各项均为正数,(2a4),(a3),(4a5)成等差数列,且a3=2a2^2:(1)求数列an的)求数列an的通项公式(2
)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
等比数列an的各项均为正数
an>0
a1≠0,公比q>0
(2a4),(a3),(4a5)成等差数列
2a3=2a4+4a5
2a1*q^2=2a1*q^3+4a1*q^4
解得
q=1/2或q=-1(舍去)
a3=2a2^2
a1*q^2=2a1^2*q^2
解得
a1=1/2
数列an的通项公式
an=2^(-n)
求数列bn的前n项和sn
用列项求和法求解
bn=[(2n+5)/(2n+1)(2n+3)]an
bn=[2/(2n+1)-1/(2n+3)]*2^(-2)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
b1=1/3-1/5*2^(-1)
b2=1/5*2^(-1)-1/7*2^(-2)
b3=1/7*2^(-2)-1/9*2^(-3)
…………………
bn-1=1/(2n-1)*2^(2-n)-1/(2n+1)*2^(1-n)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
累加得
sn=1/3-1/(2n+3)*2^(-n)
解毕
an>0
a1≠0,公比q>0
(2a4),(a3),(4a5)成等差数列
2a3=2a4+4a5
2a1*q^2=2a1*q^3+4a1*q^4
解得
q=1/2或q=-1(舍去)
a3=2a2^2
a1*q^2=2a1^2*q^2
解得
a1=1/2
数列an的通项公式
an=2^(-n)
求数列bn的前n项和sn
用列项求和法求解
bn=[(2n+5)/(2n+1)(2n+3)]an
bn=[2/(2n+1)-1/(2n+3)]*2^(-2)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
b1=1/3-1/5*2^(-1)
b2=1/5*2^(-1)-1/7*2^(-2)
b3=1/7*2^(-2)-1/9*2^(-3)
…………………
bn-1=1/(2n-1)*2^(2-n)-1/(2n+1)*2^(1-n)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
累加得
sn=1/3-1/(2n+3)*2^(-n)
解毕
数列{an}是各项均为正数的等比数列(a1+a2)=2(1/a1 +1/a2),a3+a4+a5=64(1/a3+1/a
已知数列{an}是各项均为正数的等比数列,且a1+a2=2*(1/a1+1/a2),a3+a4+a5= 急用,
设数列an是各项为正数的等比数列,且a1+a2=2(1/a1+1/a2),a3+a4=32(1/a3+1/a4),求数列
已知数列(An)是各项均为正数的等比数列,且a1+a2=2(1/a1+1/a2),a3+a4+a5=64(1/a3+1/
已知等比数列an的各项均为正数且a1=2a2=1 a3^2=4a2a5求数列an的通项公式
已知{an}是各项均为正数的等比数列且a1+a2=2(1/a1+1/a2),a3+a4+a5=64(1/a3+1/a4+
已知{an}是各项均为正数的等比数列,且a1+a2=2(1/a1+1/a2),a3+a4+a5=64(1/a3+1/a4
求解一道数列题已知{a(n)}是各项均为正数的等比数列,且a1+a2=2(1/a1+1/a2),(a3+a4+a5)=6
各项均为正数的等比数列{an},a1+a2=2(1/a1+1/a2),a3+a4+a5=64(1/a3+1/a4+1/a
{an}是由正数组成的等比数列,公比q不等于1,且a2,a3/2,a1成等差数列,求(a3+a4)/(a4+a5)的值?
已知等比数列{an}的各项均为正数,且2a1+3a2=1,a3的平方=9a2a6.求数列{an}的通项公式
各项都是正数的等比数列{an}的公比q不等于1,且a2,二分之一a3,a1成等差数列,求(a3+a4)/(a4+a5)