作业帮 > 数学 > 作业

已知实数a、b、c满足a平方+b平方=1,b平方+c平方=2,c平方+a平方=2,则ab+bc+ca的最小值为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 08:02:02
已知实数a、b、c满足a平方+b平方=1,b平方+c平方=2,c平方+a平方=2,则ab+bc+ca的最小值为
以下有两个解答,哪个解答是对的?
一:因为a平方+b平方=1,b平方+c平方=2,c平方+a平方=2,
所以a平方=1/2,b平方=1/2,c平方=3/2
所以(ab+bc+ca)最小=根号2/2*根号2/2+(-根号3/根号2)*(根号2/2+根号2/2)=1/2-根号3
二:因为a平方+b平方=1,b平方+c平方=2,c平方+a平方=2,
所以a平方=1/2,b平方=1/2,c平方=3/2
所以(a+b+c)平方=a平方+b平方+c平方+2*(ab+bc+ca) 大于等于0
所以2*(ab+bc+ca)大于等于-5/2
所以(ab+bc+ca)最小=-5/4
已知实数a、b、c满足a平方+b平方=1,b平方+c平方=2,c平方+a平方=2,则ab+bc+ca的最小值为
一是对的.
二是错的.
因为a^2=b^2=1/2、c^2=3/2.
所以(a+b+c)^2>0、不可能有(a+b+c)^2=0的情况.
所以,ab+bc+ca>-5/4,没有ab+bc+ca=-5/4的情况.
即-5/4不能做ab+bc+ca的最值.