作业帮 > 数学 > 作业

高中立体几何,2问求详解

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:07:07
高中立体几何,2问求详解
如图,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.
高中立体几何,2问求详解
∵∠DAB=60°,∴∠ABC=120˚;
于是AC²=AB²+BC²-2AB*BCcos120˚=2+2cos60˚=3
在平面AA1B1B内作A1E⊥AB,则A1E=AA1sin60˚=√3/2.
在对角面ACC1A1内作A1F⊥AC,∵对角面ACC1A1⊥底面ABCD,
AC是它们的交线,因此A1F⊥底面ABCD,连EF,按三垂线定理,
AF⊥EF.
A1E=A1Asin60°=√3/2.
AE=A1Acos60°=1/2.
EF=AEtan30°=(1/2)(√3/3)=√3/6.
∴A1F=√(A1E²-EF²)=√[(√3/2)²-(√3/6)²]=√(2/3).
于是sin∠A1AF=A1F/A1A=√(2/3).
cos∠A1AF=√(1-2/3)=√(1/3).
cos∠ACC1=cos(180˚-∠ACC1)=-cos∠ACC1=-√(1/3).
∴AC1=√[AC²+C1C²-2AC*C1C*cos∠ACC1]
=√[3+1+2(√3)√(1/3)]=√6.