两题
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:56:46
两题
∵(1/a-1)(1/b-1)(1/c-1)=[(a+b+c)/a-1][(a+b+c)/b-1][(a+b+c)/c-1]
=(b+c)/a*(a+c)/b*(a+b)/c
=(a+b)(a+c)(b+c)/abc
∵a+b≥2√ab
a+c≥2√ac
b+c≥2√bc ∴(a+b)(a+c)(b+c)≥8abc ∴(a+b)(a+c)(b+c)/abc≥8
a/(a+1)+b/(b+1)-c/(c+1)=[abc+2ab+a+b-c]/[(a+1)(b+1)(c+1)]
∵a,b,c>0 a+b>c ∴abc+2ab>0 a+b-c>0 (a+1)(b+1)(c+1)>0
∴[abc+2ab+a+b-c]/[(a+1)(b+1)(c+1)]>0
∴a/(a+1)+b/(b+1)-c/(c+1)>0
∴a/(a+1)+b/(b+1)>c/(c+1)
=(b+c)/a*(a+c)/b*(a+b)/c
=(a+b)(a+c)(b+c)/abc
∵a+b≥2√ab
a+c≥2√ac
b+c≥2√bc ∴(a+b)(a+c)(b+c)≥8abc ∴(a+b)(a+c)(b+c)/abc≥8
a/(a+1)+b/(b+1)-c/(c+1)=[abc+2ab+a+b-c]/[(a+1)(b+1)(c+1)]
∵a,b,c>0 a+b>c ∴abc+2ab>0 a+b-c>0 (a+1)(b+1)(c+1)>0
∴[abc+2ab+a+b-c]/[(a+1)(b+1)(c+1)]>0
∴a/(a+1)+b/(b+1)-c/(c+1)>0
∴a/(a+1)+b/(b+1)>c/(c+1)