作业帮 > 综合 > 作业

 求证:2006不能表示为10个奇数的平方之和.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 23:00:05
 
求证:2006不能表示为10个奇数的平方之和.
 求证:2006不能表示为10个奇数的平方之和.
奇数可以表示为(2A+1),那么10个奇数的平方之和,可以表示成为:
(2A1+1)*(2A1+1)+(2A2+2)*(2A2+1)+...+(2A10+1)*(2A10+1)然后变化此式子,得到:
4[(A1*A1+A1)+(A2*A2+A2)+...+(A10*A10+A10)]+10
然后,你用2006-10得到1996,再除以4得到499,即上面的式子的方括号里面的数为499.
但是无论A1至A10,为奇数或者是偶数,它们每个小括号里面的式子(A*A+A)都是偶数.因此其和值不可能为奇数的499.
这就说明第一个式子的和值不可能为2006,即2006不是10个奇数的平方之和.