已知函数y=f(x)满足f(x+y)=f(x)+f(y)对任何实数x,y都成立.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 12:49:31
已知函数y=f(x)满足f(x+y)=f(x)+f(y)对任何实数x,y都成立.
(1)求证:f(2x)=2f(x);
(2)求f(0)的值;
(3)求证f(x)为奇函数.
(1)求证:f(2x)=2f(x);
(2)求f(0)的值;
(3)求证f(x)为奇函数.
证明:(1)∵(x+y)=f(x)+f(y),
令y=x,得f(x+x)=f(x)+f(x),即f(2x)=2f(x);
(2)令y=x=0,
∵f(x+y)=f(x)+f(y),
∴f(0+0)=f(0)+f(0),即f(0)=2f(0),
∴f(0)=0.
(3)证明:由已知得定义域为R.满足若x∈R,则-x∈R.
令y=-x,
∵f(x+y)=f(x)+f(y),
∴f(0)=f(x)+f(-x).
∵f(0)=0,
∴f(x)+f(-x)=0,即f(-x)=-f(x).
∴f(x)为奇函数.
令y=x,得f(x+x)=f(x)+f(x),即f(2x)=2f(x);
(2)令y=x=0,
∵f(x+y)=f(x)+f(y),
∴f(0+0)=f(0)+f(0),即f(0)=2f(0),
∴f(0)=0.
(3)证明:由已知得定义域为R.满足若x∈R,则-x∈R.
令y=-x,
∵f(x+y)=f(x)+f(y),
∴f(0)=f(x)+f(-x).
∵f(0)=0,
∴f(x)+f(-x)=0,即f(-x)=-f(x).
∴f(x)为奇函数.
1,已知定于域为R的函数f(x)满足:(1)f(x+y)=f(x)*f(y)对任何实数x,y都成立;(2)存在实数x1,
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值
已知函数f(x)满足:对任意x,y∈R,都有f(x+y)=f(x)•f(y)-f(x)-f(y)+2成立,且x>0时,f
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.
已知函数f(x)满足f(x)+f(y)=f(x+y/1+xy),对任意实数x,y属于(-1,1)都成立.求证f(x)为奇
已知函数f(x)对一切x,y都有f(x+y)=f(x)+f(y).
已知函数f(x)对一切实数x.y,都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.(一),求f(0)
已知函数f(x)是定义在R上的减函数,且对任意实数x,y都满足f(x+y)=f(x)+f(y),f(1)=1.若f(X)
已知函数f(x)对任意的实数x,y都有:f(x+y)=f(x)+f(y)-1,且x
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立
已知函数f(x)对任意的实数x,y都有f(xy)=f(x)+f(y)成立
关于集合函数已知函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.Q:已知