数学数列的几个题数字符号比较混乱,对不起阿,1:等差{An}和{Bn}的前n项和分别为Sn和Pn,Sn/Pn=(7n+4
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 00:07:59
数学数列的几个题
数字符号比较混乱,对不起阿,
1:等差{An}和{Bn}的前n项和分别为Sn和Pn,Sn/Pn=(7n+45)/(n+3),求使得An/Bn为整数的正整数
2:三个数成等差数列,它们和为15,平方和是83,求这个数列
3:{An}中,A1=1,An=1/[A(n-1)]+1 【n大于等于2】,A4=
4:{An}中,A1=1,A2=2/3,且1/[A(n-1)]+1/[A(n+1)]=2/An 【n大于等于2】,An=
5:已知{An}满足An=2A(n-1)+2^n-1【n属于正整数,且n大于等于2】,A4=81 (1)求A1,A2,A3 (2)若{(An+P)/2^n}为等差数列,求P的值 (3)求{An}的通项公式
数字符号比较混乱,对不起阿,
1:等差{An}和{Bn}的前n项和分别为Sn和Pn,Sn/Pn=(7n+45)/(n+3),求使得An/Bn为整数的正整数
2:三个数成等差数列,它们和为15,平方和是83,求这个数列
3:{An}中,A1=1,An=1/[A(n-1)]+1 【n大于等于2】,A4=
4:{An}中,A1=1,A2=2/3,且1/[A(n-1)]+1/[A(n+1)]=2/An 【n大于等于2】,An=
5:已知{An}满足An=2A(n-1)+2^n-1【n属于正整数,且n大于等于2】,A4=81 (1)求A1,A2,A3 (2)若{(An+P)/2^n}为等差数列,求P的值 (3)求{An}的通项公式
1.根据等差数列的性质,有S(2n-1)=(2n-1)An.(用文字叙述,即等差数列连续奇数项之和等于项数乘以中间项,这可是高考重点,务必熟悉!)
于是An/Bn=(2n-1)An/(2n-1)Bn=S(2n-1)/P(2n-1)=[7(2n-1)+45]/[(2n-1)+3]=(7n+19)/(n+1)=7+12/(n+1)
要使An/Bn为整数,则n+1应该是12的约数,又n是正整数,所以
n+1=2,3,4,6,12,即n=1,2,3,4,11
故:所求的正整数n的值为1,2,3,4,11.
2.因为三个数成等差数列,所以可设为x-d,x,x+d.
由它们和为15,可得(x-d)+x+(x+d)=15,即3x=15,解得x=5
于是这三个数为5-d,5,5+d.
又因为它们得平方和是83,所以(5-d)^2+5^2+(5+d)^2=83,解得:d±2
故所求数列为3,5,7或7,5,3.
3.由An=1/[A(n-1)]+1
令n=2,有A2=1/A1+1=1/1+1=2;
令n=3,有A3=1/A2+1=1/2+1=3/2;
令n=4,有A4=1/A3+1=2/3+1=5/3,
故:所求A4的值5/3.
4.令Bn=1/An,
则由1/[A(n-1)]+1/[A(n+1)]=2/An ,可得B(n-1)+B(n+1)=2Bn,
即Bn-B(n-1)=B(n+1)-Bn,因此{Bn}是等差数列,设其公差为d.
又B1=1/A1=1,B2=1/A2=3/2,因此d=B2-B1=1/2
于是Bn=B1+(n-1)d=1+(n-1)×1/2=(n+1)/2,那么An=1/Bn=2/(n+1)
故:所求An=2/(n+1).
5:(1)由An=2A(n-1)+2^n-1
令n=4,有A4=2A3+2^4-1,即A4=2A3+15,
将A4=81代入上式,可求得A3=33;
令n=3,有A3=2A2+2^3-1,即A3=2A2+7,
将A3=33代入上式,可求得A2=13;
令n=2,有A2=2A1+2^2-1,即A2=2A1+3,
将A3=13代入上式,可求得A1=5,
故:所求A1,A2,A3的值分别为5,13,33.
(2)令Bn=(An+P)/2^n
则B1=(A1+p)/2=(5+p)/2,B2=(A2+p)/4=(13+p)/4,B3=(A3+p)/8=(33+p)/8.
若{Bn}为等差数列,则2B2=B1+B3,即2×(13+p)/4=(5+p)/2+(33+p)/8,解得:p=-1
以下验证p=-1时,数列{(An+P)/2^n}确实为等差数列.
由An=2A(n-1)+2^n-1,可得An-1=2A(n-1)+2^n-2,即An-1=2[A(n-1)-1]+2^n
将上式两边同时除以2^n,可得:(An-1)/2^n=[A(n-1)-1]/2^(n-1)+1
这就意味着,数列{(An-1)/2^n}是公差d=1的等差数列.
故:所求p的值为-1.
(3)由(2)可知数列{Bn}是公差d=1的等差数列,且易求得B1=(5+p)/2=2
因此Bn=B1+(n-1)d=2+(n-1)×1=n+1,即(An-1)/2^n=n+1,整理得:An=(n+1)2^n+1
故:所求{An}的通项公式为An=(n+1)2^n+1.
于是An/Bn=(2n-1)An/(2n-1)Bn=S(2n-1)/P(2n-1)=[7(2n-1)+45]/[(2n-1)+3]=(7n+19)/(n+1)=7+12/(n+1)
要使An/Bn为整数,则n+1应该是12的约数,又n是正整数,所以
n+1=2,3,4,6,12,即n=1,2,3,4,11
故:所求的正整数n的值为1,2,3,4,11.
2.因为三个数成等差数列,所以可设为x-d,x,x+d.
由它们和为15,可得(x-d)+x+(x+d)=15,即3x=15,解得x=5
于是这三个数为5-d,5,5+d.
又因为它们得平方和是83,所以(5-d)^2+5^2+(5+d)^2=83,解得:d±2
故所求数列为3,5,7或7,5,3.
3.由An=1/[A(n-1)]+1
令n=2,有A2=1/A1+1=1/1+1=2;
令n=3,有A3=1/A2+1=1/2+1=3/2;
令n=4,有A4=1/A3+1=2/3+1=5/3,
故:所求A4的值5/3.
4.令Bn=1/An,
则由1/[A(n-1)]+1/[A(n+1)]=2/An ,可得B(n-1)+B(n+1)=2Bn,
即Bn-B(n-1)=B(n+1)-Bn,因此{Bn}是等差数列,设其公差为d.
又B1=1/A1=1,B2=1/A2=3/2,因此d=B2-B1=1/2
于是Bn=B1+(n-1)d=1+(n-1)×1/2=(n+1)/2,那么An=1/Bn=2/(n+1)
故:所求An=2/(n+1).
5:(1)由An=2A(n-1)+2^n-1
令n=4,有A4=2A3+2^4-1,即A4=2A3+15,
将A4=81代入上式,可求得A3=33;
令n=3,有A3=2A2+2^3-1,即A3=2A2+7,
将A3=33代入上式,可求得A2=13;
令n=2,有A2=2A1+2^2-1,即A2=2A1+3,
将A3=13代入上式,可求得A1=5,
故:所求A1,A2,A3的值分别为5,13,33.
(2)令Bn=(An+P)/2^n
则B1=(A1+p)/2=(5+p)/2,B2=(A2+p)/4=(13+p)/4,B3=(A3+p)/8=(33+p)/8.
若{Bn}为等差数列,则2B2=B1+B3,即2×(13+p)/4=(5+p)/2+(33+p)/8,解得:p=-1
以下验证p=-1时,数列{(An+P)/2^n}确实为等差数列.
由An=2A(n-1)+2^n-1,可得An-1=2A(n-1)+2^n-2,即An-1=2[A(n-1)-1]+2^n
将上式两边同时除以2^n,可得:(An-1)/2^n=[A(n-1)-1]/2^(n-1)+1
这就意味着,数列{(An-1)/2^n}是公差d=1的等差数列.
故:所求p的值为-1.
(3)由(2)可知数列{Bn}是公差d=1的等差数列,且易求得B1=(5+p)/2=2
因此Bn=B1+(n-1)d=2+(n-1)×1=n+1,即(An-1)/2^n=n+1,整理得:An=(n+1)2^n+1
故:所求{An}的通项公式为An=(n+1)2^n+1.
已知数列{An}的前n项和Sn=n²+pn,数列{Bn}的前n项和pn=3n²-2n,若A9=B9,
数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.
【高中数学】数列{an}的前N项和为Sn,求证:Sn=an2+bn(a,b∈R)是数列{an}为等差
已知数列an的通项为an,前n项和为Sn,且an是Sn与2的等差中项;数列bn中,b1=1,点P(bn,bn+1)在直线
设数列(An)的前N项和为Sn,已知Sn=2An-2的n次方.(1)设(Bn)=an/2的n次方-1,证明(Bn)为等差
已知数列an的前n项和为sn,且对任意正整数n都有an是n与sn的等差中项(1)bn=an+1,求bn
已知等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=【7n+1】/【4n+27】,则an/bn=
已知数列{an}的前n项和Sn=n²/2+pn,{bn}的前n项和Tn=2(n次方)-1,且a4=b4.
等差数列公差为2,前n项和Sn=Pn方+2n若bn=﹙2n-1﹚An分之2,记数列{Bn}的前N项和为Tn,求使Tn﹥1
已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n
考试着呢 已知数列{an}的前n项和为sn,对一切正整数n ,点pn(n,sn)都在函数
数列{an}的前n项和为Sn,点pn(n,Sn)(n属于正整数)均在函数f(x)=-x平方+7x的图象上,求数列{an}