已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:23:04
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(2)设过点P的直线ll与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;
(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(2)设过点P的直线ll与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;
(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
(1)设直线l的斜率为k(k存在)则方程为y-0=k(x-2).
又圆C的圆心为(3,-2),半径r=3,
由
|3k+2-2k|
k2+1=1,解得k=-
3
4.
所以直线方程为y=-
3
4(x-2),即3x+4y-6=0;
当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;
(2)由于|CP|=
5,而弦心距d=
5,
所以d=|CP|=
5,所以P为MN的中点,
所以所求圆的圆心坐标为(2,0),半径为
1
2|MN|=2,
故以MN为直径的圆Q的方程为(x-2)2+y2=4;
(3)把直线ax-y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直线ax-y+1=0交圆C于A,B两点,
故△=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.
则实数a的取值范围是(-∞,0).
设符合条件的实数a存在,
由于l2垂直平分弦AB,故圆心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,
而kAB=a=-
1
kPC,
所以a=
1
2.
由于
1
2∉(-∞,0),
故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.
又圆C的圆心为(3,-2),半径r=3,
由
|3k+2-2k|
k2+1=1,解得k=-
3
4.
所以直线方程为y=-
3
4(x-2),即3x+4y-6=0;
当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;
(2)由于|CP|=
5,而弦心距d=
5,
所以d=|CP|=
5,所以P为MN的中点,
所以所求圆的圆心坐标为(2,0),半径为
1
2|MN|=2,
故以MN为直径的圆Q的方程为(x-2)2+y2=4;
(3)把直线ax-y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直线ax-y+1=0交圆C于A,B两点,
故△=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.
则实数a的取值范围是(-∞,0).
设符合条件的实数a存在,
由于l2垂直平分弦AB,故圆心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,
而kAB=a=-
1
kPC,
所以a=
1
2.
由于
1
2∉(-∞,0),
故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.
已知点p(0,5)及圆C:x2+y2+4x-12y+24=0 急,
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0,设过点P的直线与圆C交于A、B两点,当|AB|=4,求以线段A
已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3)
已知点P(0,5)及圆C:x2+y2+4x-12y+24=0,若直线l过点P且被圆C截得的线段长为43,求l的方程.
已知点P(0,3)及圆C:x2+y2-8x-2y+12=0,过P的最短弦所在的直线方程为( )
数学-已知P(2,0)及圆C:x2+y2-6x+4y+4=0 (1).若直线L过点P且与圆心C的距离为1,求直线的L的方
已知圆C:x2+y2-4x-6y+12=0,点A(3,5).
已知曲线C:x2+y2=4(x≥0,y≥0),与抛物线x2=y及y2=x的图象分别交于点A(x1,y1),B(x2,y2
已知点P(1,4)在圆C:x2+y2+2ax-4y+b=0上,点P关于直线x+y-3=0的对称点也在圆C上,则a=___
已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.若直线l过点p且被圆C截得的线段长为4根号3
已知x2+y2-4x-6y+12=0,点p(x,y)是圆上任意一点,求y/x的最值
已知圆C:x2+y2+2x-4y+3=0.