已知ABCD是空间四边形形,E、F、G、H分别是AB、BC、CD、DA的中点,如果对角线AC=4,BD=2,那么EG2+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:37:10
已知ABCD是空间四边形形,E、F、G、H分别是AB、BC、CD、DA的中点,如果对角线AC=4,BD=2,那么EG2+HF2的值等于( )
A. 10
B. 15
C. 20
D. 25
A. 10
B. 15
C. 20
D. 25
如下图所示
依次连接EF、FG、GH、HE
∵E是AB中点,H是AD中点,
∴EH∥BD,且EH=
1
2BD=1
同理:
FG∥BD,FG=
1
2BD=1
所以,EH∥FG,EH=FG
同理,EF∥HG,EF=HG
所以,四边形EFGH为边长为1、2的平行四边形
设∠EHG=θ,那么∠HEF=180°-θ
在△EHG中,由余弦定理有:
EG2=EH2+HG2-2×EH×HG×cosθ=1+4-4cosθ=5-4cosθ
在△EFH中,由余弦定理有:
FH2=EF2+EH2-2×EF×EH×cos(180°-θ)=4+1-4cos(180°-θ)=5+4cosθ
上述两式相加,得到:
EG2+FH2=5-4cosθ+5+4cosθ=10
故选A
依次连接EF、FG、GH、HE
∵E是AB中点,H是AD中点,
∴EH∥BD,且EH=
1
2BD=1
同理:
FG∥BD,FG=
1
2BD=1
所以,EH∥FG,EH=FG
同理,EF∥HG,EF=HG
所以,四边形EFGH为边长为1、2的平行四边形
设∠EHG=θ,那么∠HEF=180°-θ
在△EHG中,由余弦定理有:
EG2=EH2+HG2-2×EH×HG×cosθ=1+4-4cosθ=5-4cosθ
在△EFH中,由余弦定理有:
FH2=EF2+EH2-2×EF×EH×cos(180°-θ)=4+1-4cos(180°-θ)=5+4cosθ
上述两式相加,得到:
EG2+FH2=5-4cosθ+5+4cosθ=10
故选A
已知E,F,G,H分别为空间四边形ABCD四条边AB,BC,CD,DA的中点,若BD=2,AC=6,那么EG2+HF2=
如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=?
如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=_____
已知空间四边形ABCD的对角线AC、BD,点E、F、G、H、M、N分别是AB、BC、CD、DA、AC、BD的中点.求证:
已知空间四边形ABCD中,AC=BD,E、F、G、H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是菱形 求详
空间四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点,AC+BD=a,AC*BD=b,求EG的平方+FH
如图四边形ABCD中.E,F,G,H,分别是AB,BC,CD,DA的中点.且对角线AC=BD,求证:四边形EFGH是菱形
点E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,且BD=AC,则四边形EFGH是______.
空间四边形abcd中e,f,g,h分别是ab,bc,cd,da的中点且ac=bd,证明efgh是平面图形
空间四边形abcd中e,f,g,h分别是ab,bc,cd,da的中点,且ac=bd,证明efgh是平面图形
空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,求证:EFGH是菱形.
空间四边形ABCD中,E,F,G,H分别是 AB,BC,CD,DA的中点,若EG=FH,求AC与BD所成的角,//