∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用三种方法求解
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
∫∫∫(x+y+z)∧2dV,其中Ω由锥面z=√(x∧2+y∧2)和球面x∧2+y∧2+z∧2=4所围立体,
计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围
计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域.
计算I=∫∫∫Ω(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z及平面z=2所围成的区域.
计算三重积分∫∫∫z^2dv,其中Ω是曲面z=(x^2+y^2)^(1/2),z=1,z=2所围成的区域
$$$︸(x^2+y^2+z^2)dv,其中︸是由球面x^2+y^2+z^2=1所围成的闭区域,计算此三重积分
计算三重积分 ∫∫∫Ωdv,其中Ω是由曲面x^2+y^2=2z及平面z=2平面所围成的闭区域
计算三重积分∫∫∫Z√(x∧2+y∧2)dv,其中Ω是由曲面z=x∧2+y∧2,平面z=1所围成的立体
∫∫∫x*e^(x^2+y^2+z^2)^2dv 体积由球面x^2+y^2+z^2=1与球面x^2+y^2+z^2=4之
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy