如果矩阵A是一个m x n 的矩阵时,矩阵A的列向量是几维的?
如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵
证明:如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵.
如果向量a既是矩阵M的特征向量,又是矩阵N的特征向量,试证明:a必是矩阵MN及NM的特征向量.
a是m*n矩阵,b是n*m矩阵,ab是几阶矩阵?如果是m阶矩阵,为什么?题目中未说明m和n的大小?
矩阵特征值设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(ch
设A是a x m矩阵,B是m x n矩阵,n小于m,E是n介单位阵,若AB=E,证明B的列向量组线性无关.
(a)已知矩阵A是一个m*n的矩阵,m
设A是n×m矩阵,B是m×n矩阵,其中n<m,I是n阶单位矩阵,若AB=I,证明B的列向量组线性无关.
有一个m×n的矩阵A,它的秩是n,也就是说它的列向量是独立的,那么怎么证明A的转置×A是一个可逆矩阵?
如果向量x是矩阵a的一个非零特征值λ所对应的特征向量,则x是a的列向量的线性组合.
A为mxn矩阵,秩为m,B为nx(n-m)矩阵,秩为n-m,AB=0,a是满足Aa=0的一个n维列向量,
A是m*n阶矩阵,B是n*s阶矩阵,B的列向量线性无关,若A的列向量线性无关,求证AB的列向量线性无关.