作业帮 > 数学 > 作业

在rt三角形abc中,角c=90度,bc=a,ca=b,ab=c,请你分别求出满足下列条件的圆o的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 20:30:07
在rt三角形abc中,角c=90度,bc=a,ca=b,ab=c,请你分别求出满足下列条件的圆o的
半径
在rt三角形abc中,角c=90度,bc=a,ca=b,ab=c,请你分别求出满足下列条件的圆o的
/>设Rt△ABC中,∠C=90度,BC=a,AC=b,AB=c
结论是:内切圆半径r=(a+b-c)/2
或者用:内切圆直径L=a+b-c
证明方法一般有两种:
方法一:
如图设内切圆圆心为O,三个切点为D、E、F,连接OD、OE
显然有OD⊥AC,OE⊥BC,OD=OE
所以四边形CDOE是正方形
所以CD=CE=r
所以AD=b-r,BE=a-r,
因为AD=AF,CE=CF
所以AF=b-r,CF=a-r
因为AF+CF=AB=r
所以b-r+a-r=r
内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c
方法二:
如图设内切圆圆心为O,三个切点为D、E、F,连接OD、OE、OF,OA、OB、OC
显然有OD⊥AC,OE⊥BC,OF⊥AB
所以S△ABC=S△OAC+S△OBC+S△OAB
所以ab/2=br/2+ar/2+cr/2
所以r=ab/(a+b+c)
=ab(a+b-c)/(a+b+c)(a+b-c)
=ab(a+b-c)/[(a+b)^2-c^2]
因为a^2+b^2=c^2
所以内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c