求积分(1+sinx)/[sinx*(1+cosx)]dx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:58:40
求积分(1+sinx)/[sinx*(1+cosx)]dx
∫{(1+sinx)/[sinx(1+cosx)]}dx
=∫{1/[sinx(1+cosx)]}dx+∫[1/(1+cosx)]dx
=∫{sinx/[(six)^2(1+cosx)]}dx+(1/2)∫{[1/[cos(x/2)]^2}dx
=-∫{1/[(1-cosx)(1+cosx)^2]}d(cosx)+∫{1/[cos(x/2)]^2}d(x/2)
=-(1/2)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)^2]}d(cosx)
+arctan(x/2)
=-(1/2)∫[1/(1+cosx)^2]d(cosx)
-(1/2)∫{1/[(1-cosx)(1+cosx)]d(cosx)+arctan(x/2)
=(1/2)[1/(1+cosx)]+arctan(x/2)
-(1/4)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)]}d(cosx)
=1/(2+2cosx)+arctan(x/2)-(1/4)∫[1/(1+cosx)]d(cosx)
-(1/4)∫[1/(1-cosx)]d(cosx)
=1/(2+2cosx)+arctan(x/2)-(1/4)ln(1+cosx)+(1/4)ln(1-cosx)+C.
再问: 看着眼晕 还是谢谢你 不过∫{1/[cos(x/2)]^2}d(x/2)=∫[sec(x/2)]^2d(x/2)=tan(x/2)+C 这里是你错了还是我错了
再答: 抱歉!是我们都错了。 ∫{(1+sinx)/[sinx(1+cosx)]}dx =∫{1/[sinx(1+cosx)]}dx+∫[1/(1+cosx)]dx =∫{sinx/[(six)^2(1+cosx)]}dx+(1/2)∫{[1/[cos(x/2)]^2}dx =-∫{1/[(1-cosx)(1+cosx)^2]}d(cosx)+∫{1/[cos(x/2)]^2}d(x/2) =-(1/2)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)^2]}d(cosx) +tan(x/2) =-(1/2)∫[1/(1+cosx)^2]d(cosx) -(1/2)∫{1/[(1-cosx)(1+cosx)]d(cosx)+tan(x/2) =(1/2)[1/(1+cosx)]+tan(x/2) -(1/4)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)]}d(cosx) =1/(2+2cosx)+tan(x/2)-(1/4)∫[1/(1+cosx)]d(cosx) -(1/4)∫[1/(1-cosx)]d(cosx) =1/(2+2cosx)+tan(x/2)-(1/4)ln(1+cosx)+(1/4)ln(1-cosx)+C。
=∫{1/[sinx(1+cosx)]}dx+∫[1/(1+cosx)]dx
=∫{sinx/[(six)^2(1+cosx)]}dx+(1/2)∫{[1/[cos(x/2)]^2}dx
=-∫{1/[(1-cosx)(1+cosx)^2]}d(cosx)+∫{1/[cos(x/2)]^2}d(x/2)
=-(1/2)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)^2]}d(cosx)
+arctan(x/2)
=-(1/2)∫[1/(1+cosx)^2]d(cosx)
-(1/2)∫{1/[(1-cosx)(1+cosx)]d(cosx)+arctan(x/2)
=(1/2)[1/(1+cosx)]+arctan(x/2)
-(1/4)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)]}d(cosx)
=1/(2+2cosx)+arctan(x/2)-(1/4)∫[1/(1+cosx)]d(cosx)
-(1/4)∫[1/(1-cosx)]d(cosx)
=1/(2+2cosx)+arctan(x/2)-(1/4)ln(1+cosx)+(1/4)ln(1-cosx)+C.
再问: 看着眼晕 还是谢谢你 不过∫{1/[cos(x/2)]^2}d(x/2)=∫[sec(x/2)]^2d(x/2)=tan(x/2)+C 这里是你错了还是我错了
再答: 抱歉!是我们都错了。 ∫{(1+sinx)/[sinx(1+cosx)]}dx =∫{1/[sinx(1+cosx)]}dx+∫[1/(1+cosx)]dx =∫{sinx/[(six)^2(1+cosx)]}dx+(1/2)∫{[1/[cos(x/2)]^2}dx =-∫{1/[(1-cosx)(1+cosx)^2]}d(cosx)+∫{1/[cos(x/2)]^2}d(x/2) =-(1/2)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)^2]}d(cosx) +tan(x/2) =-(1/2)∫[1/(1+cosx)^2]d(cosx) -(1/2)∫{1/[(1-cosx)(1+cosx)]d(cosx)+tan(x/2) =(1/2)[1/(1+cosx)]+tan(x/2) -(1/4)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)]}d(cosx) =1/(2+2cosx)+tan(x/2)-(1/4)∫[1/(1+cosx)]d(cosx) -(1/4)∫[1/(1-cosx)]d(cosx) =1/(2+2cosx)+tan(x/2)-(1/4)ln(1+cosx)+(1/4)ln(1-cosx)+C。
求积分(1+sinx)/[sinx*(1+cosx)]dx
求积分:∫ sinx*sinx/(1+cosx*cosx)dx
求数学积分∫1/(sinx^3 * cosx)dx
求(sinx/(cosx+sinx))dx的积分
积分(1-cosx)dx/(x-sinx)
求积分:∫[1/sinx(1-cosx)]dx,
求积分:∫(x+sinx)/(1+cosx)dx
求一个积分∫1/((sinx)^3+(cosx)^3)dx
求积分∫1/(sinx+cosx)²dx
∫sinx√(1+cosx^2)dx的积分
∫ sinx+cosx/(sinx-cosx)^1/3 dx 求不定积分
求定积分∫ 上限2arctan2,下限π/2,1/(1-COSx)sinx*sinx dx