△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=B
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 10:50:08
△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)
方法一、证明:延长AB到D,使BD=BP,连接PD,
则∠D=∠5.
∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,
∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,∠3=∠4=40°=∠C,
∴QB=QC,
又∠D+∠5=∠3+∠4=80°,
∴∠D=40°.
在△APD与△APC中,
∠D=∠C
∠2=∠1
AP=AP
∴△APD≌△APC(AAS),
∴AD=AC.
即AB+BD=AQ+QC,
∴AB+BP=BQ+AQ.
方法二、如图,
∴∠CBQ=
1
2∠ABC=
1
2×80°=40°,
∴∠CBQ=∠ACB,
∴BQ=CQ,
∴BQ+AQ=CQ+AQ=AC…①,
过点P作PD∥BQ交CQ于点D,
则∠CPD=∠CBQ=40°,
∴∠CPD=∠ACB=40°,
∴PD=CD,∠ADP=∠CPD+∠ACB=40°+40°=80°,
∵∠ABC=80°,
∴∠ABC=∠ADP,
∵AP平分∠BAC,
∴∠BAP=∠CAP,
∵在△ABP与△ADP中,
ABC=∠ADP
∠BAP=∠CAP
AP=AP,
∴△ABP≌△ADP(AAS),
∴AB=AD,BP=PD,
∴AB+BP=AD+PD=AD+CD=AC…②,
由①②可得,BQ+AQ=AB+BP.
则∠D=∠5.
∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,
∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,∠3=∠4=40°=∠C,
∴QB=QC,
又∠D+∠5=∠3+∠4=80°,
∴∠D=40°.
在△APD与△APC中,
∠D=∠C
∠2=∠1
AP=AP
∴△APD≌△APC(AAS),
∴AD=AC.
即AB+BD=AQ+QC,
∴AB+BP=BQ+AQ.
方法二、如图,
∴∠CBQ=
1
2∠ABC=
1
2×80°=40°,
∴∠CBQ=∠ACB,
∴BQ=CQ,
∴BQ+AQ=CQ+AQ=AC…①,
过点P作PD∥BQ交CQ于点D,
则∠CPD=∠CBQ=40°,
∴∠CPD=∠ACB=40°,
∴PD=CD,∠ADP=∠CPD+∠ACB=40°+40°=80°,
∵∠ABC=80°,
∴∠ABC=∠ADP,
∵AP平分∠BAC,
∴∠BAP=∠CAP,
∵在△ABP与△ADP中,
ABC=∠ADP
∠BAP=∠CAP
AP=AP,
∴△ABP≌△ADP(AAS),
∴AB=AD,BP=PD,
∴AB+BP=AD+PD=AD+CD=AC…②,
由①②可得,BQ+AQ=AB+BP.
在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q.求证:AB+BP=
如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:1AD=1AB+1AC
如图8.,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP交平分∠BAC交BD于P,求∠APB的度数
在直角三角形△ABC中,角C=90°,BD平分∠ABC且交AC于D,AP平分∠BAC.求角APD的度数
在直角三角形△ABC中,角C=90°,BD平分∠ABC且交AC于D,AP平分∠BAC.求角APD的度数!
已知在△ABC中,(AB>AC)AP平分∠BAC,CP⊥AP于P,M是BC中点,求证:MP=1/2(AB-AC)
如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若AP平分∠BAC且交BD于点P,求∠BPA的
如图,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于点D,若AP平分∠BAC交BD于点P,求∠APB的度数
如图,在直角△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P.
在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC于G,EF平行于BC交AC于F,求证A
如图所示,△ABC中,∠ACB=90°,AE平分∠BAC,CD⊥AB交AB于D,DF‖BC交AC于F,求证:DC平分∠F
已知,三角形ABC的外角平分线BP、CP交于P点,连接AP.求证:AP平分∠BAC.