作业帮 > 数学 > 作业

解伯努利方程,dy/dx+y=y^2(cosx-sinx)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:30:43
解伯努利方程,dy/dx+y=y^2(cosx-sinx)
解伯努利方程,dy/dx+y=y^2(cosx-sinx)
即y'+y=y²(cosx-sinx)
令u=1/y
则y=1/u,u'=-y'/y²,y'=-u'y²=-u'/u²
代入原方程,变为
-u'/u²+1/u=(1/u²)(cosx-sinx)
整理得
u'-u=sinx-cosx
对于此方程,可解得其通解为
u=C(e^x)-sinx,C为任意常数
所以,原方程的解为
y=1/[C(e^x)-sinx]