作业帮 > 数学 > 作业

设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2,(1)求a的值及f(x)的定义域

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:12:11
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2,(1)求a的值及f(x)的定义域
(2)求f(x)在区间【0,3/2】上的最大值和最小值
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2,(1)求a的值及f(x)的定义域
f(x)=loga(1+x)+loga(3-x)=loga(1+x)(3-x) 则f(1)=loga(4)=2,则a=2. 作为对数 必须满足1+x>0 同时3-x>0 所以定义域 {x|-1