已知A为5*5矩阵,且方程组Ax=0的基础解系含两个解向量,则秩r(A)=?,为什么?
设齐次线性方程组Ax=0含有5个未知量,方程组的基础解系中含有3个解向量,则系数矩阵A的秩为( )
为什么r(A)=1,所以方程组AX=0的基础解系含n-r(A)个线性无关的解向量?
设有齐次线性方程组AX=0,其中A为m*n矩阵,X为n维列向量,R(A)=r,则方程组AX=0的基础解系中有几个向量,当
设A为4*5阶矩阵,且A的行向量组线性无关,则方程组AX=B
设4*5矩阵A的秩为3,5*2矩阵B的秩为2,且AB=O,证明:若向量b是齐次方程组Ax=0的解 则非齐次方程组By=
设A为4×3的矩阵且秩为2,向量n1=(1 0 1)T,n2=(2 1 3)T是方程组Ax=B的两个解,求方程组Ax=B
线性代数的一个小问题A为4阶矩阵,r(A)=3 所以方程组AX=0的基础解系含有 一个线性无关解向量.这句话怎么理解啊?
设$A$是$5×6$矩阵,且秩$(A)=4$,则齐次线性方程组$AX=0$的基础解系中解向量个数为()
若三元齐次线性方程组AX=0的基础解系含两个解向量 则矩阵A的秩等于?
设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组 AX=b的两个不同的解向量,则AX=0的通解为
矩阵A=1212;01TT;1T01齐次线性方程组Ax=0的基础解析含有两个线性无关的解向量,试求方程组Ax=0的全部解
一个线性代数的问题已知n*n阶矩阵A,和n*1阶列向量X.若齐次数线性方程组AX=0的基础解系为N1,N2……Nk,且n