作业帮 > 数学 > 作业

设α1,α2线性无关,α1+β,α2+β线性相关,求向量β用α1,α2线性表示的表达式

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 18:04:48
设α1,α2线性无关,α1+β,α2+β线性相关,求向量β用α1,α2线性表示的表达式
答案是b=ca1-(1+c)a2,c∈R.
设α1,α2线性无关,α1+β,α2+β线性相关,求向量β用α1,α2线性表示的表达式
因为α1+β,α2+β线性相关
所以存在k1,k2不全为0满足 k1(α1+β)+k2(α2+β)=0
所以 k1α1+k2α2+(k1+k2)β=0
由于α1,α2线性无关
所以 k1+k2≠0
所以 β=-[k1/(k1+k2)]α1-[k2/(k1+k2)]α2
令 c=-k1/(k1+k2), 则
β=-[k1/(k1+k2)]α1-[1 - k1/(k1+k2)]α2
= cα1-(1+c)α2