作业帮 > 数学 > 作业

x+y+z=a,求证x2+y2+z2≥a2/3

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 20:52:04
x+y+z=a,求证x2+y2+z2≥a2/3
x2是x的平方,以此类推.后面那数是a的平方除以三
x+y+z=a,求证x2+y2+z2≥a2/3
由柯西不等式
(x²+y²+z²)(1²+1²+1²)≥(x+y+z)²=a²
因此x²+y²+z²≥a²/3
再问: 柯西不等式?什么东西,我高二的,要学过的过程啊
再答: 柯西不等式:(a1²+a2²+...+an²)(b1²+b2²+...+bn²)≥(a1*b1+a2*b2+...+an*bn)² 这个公式就是高中的,不过课本上没有,很多老师都作为补充内容讲的。 用其它方法: x²+y²≥2xy x²+z²≥2xz y²+z²≥2yz 三式相加得:2(x²+y²+z²)≥2xy+2xz+2yz 两边同时加上x²+y²+z²,得:3(x²+y²+z²)≥2xy+2xz+2yz+x²+y²+z²=(x+y+z)²=a² 因此:x²+y²+z²≥a²/3