求证明高中数学三角公式证明
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 07:08:28
求证明高中数学三角公式证明
求证:tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
求证:tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
证明:
sina/(1+cosa)
=2sin(a/2)cos(a/2)/(1+2cos²(a/2)-1)
=2sin(a/2)cos(a/2)/(2cos²(a/2))
=sin(a/2)/cos(a/2)
=tan(a/2)
(1-cosa)/sina
=[1-(1-2sin²(a/2))]/[2sin(a/2)cos(a/2)]
=2sin²(a/2)/[2sin(a/2)cos(a/2)]
=sin(a/2)/cos(a/2)
=tan(a/2)
∴tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
sina/(1+cosa)
=2sin(a/2)cos(a/2)/(1+2cos²(a/2)-1)
=2sin(a/2)cos(a/2)/(2cos²(a/2))
=sin(a/2)/cos(a/2)
=tan(a/2)
(1-cosa)/sina
=[1-(1-2sin²(a/2))]/[2sin(a/2)cos(a/2)]
=2sin²(a/2)/[2sin(a/2)cos(a/2)]
=sin(a/2)/cos(a/2)
=tan(a/2)
∴tan(a/2)=sina/(1+cosa)=(1-cosa)/sina