设向量i,j是直角坐标系中,x轴、y轴正方向上的单位向量,设向量a=(m+1)i-3j,向量b=i+(m-1)j
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 23:06:22
设向量i,j是直角坐标系中,x轴、y轴正方向上的单位向量,设向量a=(m+1)i-3j,向量b=i+(m-1)j
(1)若(a+b)⊥(a-b),求m;
(2)若m=3时,求a,b的夹角θ 的余弦值;
(3)是否存在实数m,使a ∥b,若存在求出m的值,不存在说明理由.
(1)若(a+b)⊥(a-b),求m;
(2)若m=3时,求a,b的夹角θ 的余弦值;
(3)是否存在实数m,使a ∥b,若存在求出m的值,不存在说明理由.
解 (1)由已知可知,a=(m+1,-3); b=(1,m-1)
a+b=(m+2,m-4); a-b=(m,-m-2)
因为 (a+b)⊥(a-b),所以(m+2)m+(m-4)(-m-2)=0
解得 m=-2
(2)若m=3时,a=(4,-3); b=(1,2)
|a|=5;|b|=√5 ab=4-6=-2
所以 cosθ=(a*b)/(|a||b|)=-2/(5√5)=-(2√5 )/25
(3) a=(m+1,-3); b=(1,m-1)
若a ∥b 则 (m+1)(m-1)+3=0 即m^2+2=0 无解
所以不存在实数m,使a ∥b.
a+b=(m+2,m-4); a-b=(m,-m-2)
因为 (a+b)⊥(a-b),所以(m+2)m+(m-4)(-m-2)=0
解得 m=-2
(2)若m=3时,a=(4,-3); b=(1,2)
|a|=5;|b|=√5 ab=4-6=-2
所以 cosθ=(a*b)/(|a||b|)=-2/(5√5)=-(2√5 )/25
(3) a=(m+1,-3); b=(1,m-1)
若a ∥b 则 (m+1)(m-1)+3=0 即m^2+2=0 无解
所以不存在实数m,使a ∥b.
设 i,j是平面直角坐标系中x轴、y轴方向上的单位向量,且a=(m+1)i-3j、
向量i,j是平面直角坐标系x轴,y轴正方向上的两个单位向量,且向量AB=4向量i+2向量j,向量AC=3向量j+4向量j
设向量i、向量j分别是平面直角坐标系Ox,Oy正方向上的单位向量,且向量OA=-2+m向量j,向量OB=n向量i+向量j
设向量I,向量J分别是平面直角坐标系中与X轴,Y轴方向相同的两个单位向量,若向量A=向量I+2向量J,向量B=—2
数学题有关平面向量的什么叫做i向量和j向量是直角坐标系中x轴y轴正方向上的单位向量?原题是:已知a向量=-3i向量+4j
设i,j是平面直角坐标系内x轴,y轴正方向上的单位向量,且向量AB=4i+2j.向量AC=3i+4j,求三角形ABC的面
求解轨迹方程设 x y 属于R,i j 为直角坐标系内x y轴正方向上的单位向量,若向量a=xi+(y+2)j,b=xi
已知向量i,向量j是x,y轴正方向的单位向量,设向量a=(x-根号3)向量I+y向量j,向量b=(
设向量a=(-1-x)i,向量b=(1- x)i-yj(x、y∈R,i、j分别是x、y轴正方向上的单位向量)
设i,j分别是平面直角坐标系内x轴,y轴的正方向上的单位向量,
已知向量OA=3i-j,OC=(5-m)i-(4+m)j,其中ij分别是直角坐标系内X轴、y轴正方向上的单位向量
设x,y∈R,i、j为直角坐标平面内x、y轴正方向上的单位向量,向量a=xi+(y+2)j,b=xj+(y-2)j,|a