长方体ABCD-A1B1C1D1中,底面为正方形,AA1=2AB=4,点E在CC1上且C1E=3EC,证明:A1C垂直平
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:17:19
长方体ABCD-A1B1C1D1中,底面为正方形,AA1=2AB=4,点E在CC1上且C1E=3EC,证明:A1C垂直平面BED
连AC,BD交于点M,ME为平面ACC1A1与平面BDE的交线,设A1C过平面DEB交于点F则F必在交线ME上
(平面ACD与直线BD)
∵AC⊥BD,AA1⊥平面ABCD=>AA1⊥BD
AA1∩AC=A
∴BD⊥平面AA1C ∴BD⊥A1C
(平面ACC1A1内,RT△MCE与RT△AA1C)
CE:AC=1:2√2=CM:AA1=√2:4
所以△MCE∽△AA1C=>∠CME=∠AA1C ∠MEC=∠CME
所以∠CFM=∠CAA1=90°即A1C⊥ME
BD∩ME=M所以A1C⊥平面BDE
(平面ACD与直线BD)
∵AC⊥BD,AA1⊥平面ABCD=>AA1⊥BD
AA1∩AC=A
∴BD⊥平面AA1C ∴BD⊥A1C
(平面ACC1A1内,RT△MCE与RT△AA1C)
CE:AC=1:2√2=CM:AA1=√2:4
所以△MCE∽△AA1C=>∠CME=∠AA1C ∠MEC=∠CME
所以∠CFM=∠CAA1=90°即A1C⊥ME
BD∩ME=M所以A1C⊥平面BDE
如图所示,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
在长方体ABCD-A1B1C1D1中,AB=BC,E是棱CC1上的点,且CE=四分之一CC1.求证A1C垂直于平面BDE
正四棱柱ABCD~A1B1C1D1中 AA1=2 AB=4 点E在CC1上 且C1E=3EC 点F在BB1上 且BF=B
?正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上,且CE=λCC1 (1)λ为何值时,A1C垂
如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=12AB=1.
在四棱柱ABCD—A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是正方形,AA1=2,AB=1,点E是棱CC1的
长方体ABCD-A1B1C1D1中底面ABCD是边长为4的正方形,AA1=5,P是侧棱CC1上的一点且C1P=2
证明线面垂直长方体中ABCD-A1B1C1D1,AB=BC=4,AA1=8,E.F分别为AD和CC1的中点,O1为下底面
在棱长为4的正方体ABCD-A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E垂直EF,则|AF|的最大值为多
如图,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,E是棱CC1上的点,且CE=14CC1.
已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1,求证:E,B,F,
如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是∠DAB=60°的菱形,AA1=4,AB=2,点E在棱CC1上