作业帮 > 数学 > 作业

长方体ABCD-A1B1C1D1中,底面为正方形,AA1=2AB=4,点E在CC1上且C1E=3EC,证明:A1C垂直平

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:17:19
长方体ABCD-A1B1C1D1中,底面为正方形,AA1=2AB=4,点E在CC1上且C1E=3EC,证明:A1C垂直平面BED
长方体ABCD-A1B1C1D1中,底面为正方形,AA1=2AB=4,点E在CC1上且C1E=3EC,证明:A1C垂直平
连AC,BD交于点M,ME为平面ACC1A1与平面BDE的交线,设A1C过平面DEB交于点F则F必在交线ME上
(平面ACD与直线BD)
∵AC⊥BD,AA1⊥平面ABCD=>AA1⊥BD
AA1∩AC=A
∴BD⊥平面AA1C ∴BD⊥A1C
(平面ACC1A1内,RT△MCE与RT△AA1C)
CE:AC=1:2√2=CM:AA1=√2:4
所以△MCE∽△AA1C=>∠CME=∠AA1C ∠MEC=∠CME
所以∠CFM=∠CAA1=90°即A1C⊥ME
BD∩ME=M所以A1C⊥平面BDE