作业帮 > 数学 > 作业

数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数都成立.若数列{an}

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:47:04
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数都成立.若数列{an}为等差数列
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数n都成立.若数列{an}为等差数列,求证:3A-B+C=0
数列{an}的前项n的和为Sn,存在常数A、B、C,使得an+Sn=An^2+Bn+C对任意正整数都成立.若数列{an}
证明,据题意,{an}为等差数列,不妨假设它的首项为a1,公差为k.所以:
Sn=n*a1+k*n*(n-1)/2
an+Sn=a1+(n-1)k+n*a1+k*n*(n-1)/2
=a1+nk-k+na1+(k/2)n^2-kn/2
=(k/2)n^2+(a1+k/2)n+(a1+k)
据题意,存在常数ABC对所有n成立,则显然:
A=k/2
B=a1+k/2
C=a1-k
这样简单演算,得到
3A-B+C=0
证毕.
再问: (2)若A=-1/2,B=-3/2,C=1,设bn=an+n,数列{nbn}的前n项的和为Tn,求Tn; (3)若C=0,{an}是首项为1的等差数列,设P=根号1+1/ai^2+1/ai+1^2(求i=1……2012的和),求不超过P的最大正整数的值。
再答: (2)根据新的条件,若A=-1/2,B=-3/2,C=1,发现3A-B+C不等于0了,估计是您写错了? (3)设P=根号1+1/ai^2+1/ai+1^2(求i=1……2012的和), 这一串写得有点乱,能不能清晰一些?
再问: 题目没错,bn为另一数列,它等于an+n,{nbn}中为n乘bn,根号1+1/ai^2+1/ai+1^2为根号下1与两分式的和,a的右边为其下标,2为其平方,求i=1……2012的和为∑1至2012的求之意,请你帮助解答,这里先谢谢了!
再答: 第二问,bn为另一数列没错,但ABC是何定义? 第三问清晰了。第三问,若C=0,a1=1,那么公差k=1,这个等差数列就是an=n,即1,2,3,...,n,.... 我们发现1+1/ai^2+1/a(i+1)^2 =1+1/i^2+1/(i+1)^2=(I^2+i+1)^2/i^2(i+1)^2 所以可以开出平方。 原式=根号(1+1/ai^2+1/a(i+1)^2) =(I^2+i+1)/i(i+1) =1+1/i-1/(i+1) 最后: ∑=2012+1-1/2012 =2013-1/2013