作业帮 > 数学 > 作业

设a1,a2……an为实数,b1,b2……bn是a1,a2,……an的任意排列,则乘积的值a1b1+a2b2+……+an

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:42:30
设a1,a2……an为实数,b1,b2……bn是a1,a2,……an的任意排列,则乘积的值a1b1+a2b2+……+anbn不会超过
设a1,a2……an为实数,b1,b2……bn是a1,a2,……an的任意排列,则乘积的值a1b1+a2b2+……+an
这要用到一个不等式,叫什么来着我忘了,好像是叫车比雪夫不等式吧.
(a1b1+a2b2+……+anbn)^2≤[(a1)^2+…+(an)^2]*[(b1)^2+…+(bn)^2]
又(a1)^2+…+(an)^2=(b1)^2+…+(bn)^2
所以a1b1+a2b2+……+anbn≤(a1)^2+…+(an)^2