作业帮 > 数学 > 作业

正整数N恰有12个正整数(包括1和N)将它们按递增顺序编号d1<d2…<d12.已知下标为d4-1的正约数等于(d1+d

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:51:01
正整数N恰有12个正整数(包括1和N)将它们按递增顺序编号d1<d2…<d12.已知下标为d4-1的正约数等于(d1+d2+d4)×d8,试求正整数N
一定要有过程
正整数N恰有12个正整数(包括1和N)将它们按递增顺序编号d1<d2…<d12.已知下标为d4-1的正约数等于(d1+d
设m=d4-1,则dm=d8*(d1+d2+d4)>d8
所以12=>m>=9
有13>=d4>=10.
又N恰有12个正约数,则N的大于1的互不相同的素因子不可能超过3个.
如果有多余3个不同的素因子,则至少有2*2*2*2=16个不同的正约数.
因此素因子不可能超过3个,通过枚举,知N可能的标准分解有以下三种情况(这里并没有对q1,q2,q3做大小排序):
1.3个不同的素因子,则N=q1^2*q2*q3
2.2个不同的素因子,则N=q1^5*q2
3.1个素因子,N=q^12.
考虑情况3.设该素因子为p,有:d4=p^3,m=p^3-1.
dm=(1+p+p^3)*p^7.
因m>=9
则p^8|dm
有p|(1+p+p^3).不可能!
考虑情况2.令p1