作业帮 > 数学 > 作业

已知椭圆x^2/m +y^2/n=1与双曲线x^2/p-y^2/q=1(m,n,p,q∈R+)有共同的焦点F1、F2,P

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:06:48
已知椭圆x^2/m +y^2/n=1与双曲线x^2/p-y^2/q=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|*|PF2|=
已知椭圆x^2/m +y^2/n=1与双曲线x^2/p-y^2/q=1(m,n,p,q∈R+)有共同的焦点F1、F2,P
P在椭圆上
所以PF1+PF2=2√m
P在双曲线上
|PF1-PF2|=2√p
PF1-PF2=±2√p
若PF1-PF2=2√p
PF1+PF2=2√m
PF1=√p+√m
PF2=√m-√p
PF1×PF2=m-p
若PF1-PF2=-2√p
PF1+PF2=2√m
PF1=√m-√p
PF2=√m+√p
PF1×PF2=m-p
综上
PF1×PF2=m-p