作业帮 > 数学 > 作业

设函数f(x)=x³+sinx,若0≤θ≤π时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 11:02:31
设函数f(x)=x³+sinx,若0≤θ≤π时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是
设函数f(x)=x³+sinx,若0≤θ≤π时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是
首先由f(-x)+f(x)=0知f(x)为奇函数
f'(x)=3x²+cosx>0
mcosx>m-1
g(m)=m(1-cosx)+1>0
把m看做未知数
由一次函数单调性g(1),g(-1)均大于0
故m>-1/2