一道圆锥曲线题点M是椭圆x^2/a^2+x^2/b^2=1(a>b>0)上的点,以M为圆心的圆与X轴相切于椭圆的焦点F,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 05:08:59
一道圆锥曲线题
点M是椭圆x^2/a^2+x^2/b^2=1(a>b>0)上的点,以M为圆心的圆与X轴相切于椭圆的焦点F,圆M与Y轴相交于P、Q,若三角形PQM是钝角三角形,则椭圆离心率的取值范围是
点M是椭圆x^2/a^2+x^2/b^2=1(a>b>0)上的点,以M为圆心的圆与X轴相切于椭圆的焦点F,圆M与Y轴相交于P、Q,若三角形PQM是钝角三角形,则椭圆离心率的取值范围是
由条件M为圆心的圆与X轴相切于椭圆的焦点F,得MF垂直于x轴,MF=b^2/a,
所以圆的半径r=b^2/a=MP=MQ,三角形PQM是钝角三角形,则角PMQ>90度,
取PQ中点R,则MR垂直于y轴,RT三角形PMR中MP=b^2/a,MR=c,角PMR>45度,
所以COS∠PMR=MR/MP=ac/b^2
所以圆的半径r=b^2/a=MP=MQ,三角形PQM是钝角三角形,则角PMQ>90度,
取PQ中点R,则MR垂直于y轴,RT三角形PMR中MP=b^2/a,MR=c,角PMR>45度,
所以COS∠PMR=MR/MP=ac/b^2
已知点M在椭圆X^2/a^2+Y^2/b^2=1(a>b>0)上,以M点为圆心的圆与x轴相切于椭圆的右焦点F.(1)若圆
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F.(1)若圆M
已知点M在椭圆x^2/a^2+y^2/b^2=1上,以M为圆心的圆与x轴相切与椭圆右焦点F,若圆M与y轴相较
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以点M为圆心的圆与x轴相切于椭圆的右焦
已知F(c,0)为椭圆x^2/a^2+y^2/b^2=1的右焦点,F与椭圆上的点的距离的最大值为M,最小值为m则椭圆上与
已知直线y=x+1和椭圆x^2/m+y^2/m-1(m>1)交于点A,B,若以AB为直径的圆恰好过椭圆的左焦点F,求实数
一道圆锥曲线的题椭圆在X轴上,过椭圆的右焦点F作斜率为1的直线l,交椭圆于A,B两点,M为线段AB的中点,射线OM交椭圆
圆锥曲线的题1.已知M是椭圆 x^2/a^2 + y^2/b^2 =1(a>b>0)上一点,两焦点为F1,F2,点P是△
F(C,0)为椭圆X^2/A^2+Y^2/B^2的右焦点,F与椭圆上点的最大值,最小值分别为m,n,则椭圆与点F的距离等
已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为1/2,点B在x轴上,A、B、F三点确定的圆C恰好与直线
已知点M在椭圆x^2/a^2+y^2/b^2=1(a>b>0)上,以M为圆心的圆与x轴相
高中解析几何椭圆一题F1 F2是椭圆的x^2/a^2+y^2/b^2=1的两个焦点(a>b>0)P为椭圆上一动点,M为P