如图,在△ABC中,BE、CF,分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB 连结
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 16:29:25
如图,在△ABC中,BE、CF,分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB 连结AD AG
在三角形ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
求证:1、AD=AG
2、AD与AG的位置关系如何.
证明:
1)
因为BE、CF为三角形ABC的高
所以∠ACG+∠BAC=90°,∠ABD+∠BAC=90°
所以∠ABD=∠ACG
又因为AB=CG,BD=AC,
所以△ABD≌△GCA(SAS)
所以AD=AG
2)
AD与AG的位置关系是垂直
证明:
因为△ABD≌△GCA
所以∠BAD=∠CGA
因为∠CGA+∠GAF=90°
所以∠BAD+∠GAF=90°
所以 ∠DAG=90°
所以AD⊥AG
求证:1、AD=AG
2、AD与AG的位置关系如何.
证明:
1)
因为BE、CF为三角形ABC的高
所以∠ACG+∠BAC=90°,∠ABD+∠BAC=90°
所以∠ABD=∠ACG
又因为AB=CG,BD=AC,
所以△ABD≌△GCA(SAS)
所以AD=AG
2)
AD与AG的位置关系是垂直
证明:
因为△ABD≌△GCA
所以∠BAD=∠CGA
因为∠CGA+∠GAF=90°
所以∠BAD+∠GAF=90°
所以 ∠DAG=90°
所以AD⊥AG
已知,如图在△ABC中,BE,CE,分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,
已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB
在三角形ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD
如图,在三角形ABC中,BE,CF分别是AC,AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接
已知,如图,BE、CF分别是△ABC的边AC、AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG等于AB,连接
在三角形ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接A
已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB.
已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB
如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB
如图三角形ABC中,BE,CF分别是AC,AB边上的高在BE的延长线上截取BM=AC,在CF的延长线上截取CN=AB.识
如图,已知BE,CF在三角形ABC中的两边高,在BE上截取BP=AC,在CF的延长线上截取CQ=AB.那么PA与AQ垂直
初二全等三角形难题如图 在△ABC中,BE,CF分别是ACAB两边上的高,在BE上截取BD=AC,