作业帮 > 数学 > 作业

求导:y=(ln x)^x + x^(1/x)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 17:28:11
求导:y=(ln x)^x + x^(1/x)
求导:y=(ln x)^x + x^(1/x)
分成两部分,第一部分为(ln x)^x求导
设y1=(ln x)^x
=e^(xln(lnx))
y1'=e^(xln(lnx))*[ln(lnx)+x*(1/lnx)*(1/x)]
=e^(xln(lnx))*[ln(lnx)+1/lnx)
设y2= (x)^(1/x)
取对数 lny2 = (lnx)/x
对x求导:y2'/y2 = [1 - lnx] / x²
∴y2 ' = y [1- lnx] / x²
=x^(1/x)*[1- lnx] / x²
=x^(1/x-2)[1- lnx]
所以y'=e^(xln(lnx))*[ln(lnx)+1/lnx)+x^(1/x-2)[1- lnx]