作业帮 > 数学 > 作业

已知an是等差数列,前n项和为Sn,求证:S3n=3(S2n-Sn)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:29:52
已知an是等差数列,前n项和为Sn,求证:S3n=3(S2n-Sn)
已知an是等差数列,前n项和为Sn,求证:S3n=3(S2n-Sn)
S3n=3na1+3n(3n-1)d
3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2)
=3na1+3n(3n-1)d
所以S3n=3(S2n-Sn)
再问: 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) 请问这一步怎么来的?为什么用除?
再答: S3n=3na1+3n(3n-1)d/2 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) =3(2na1+(4n^2-2n)d/2-na1-(n^2-n)d/2) =3(na1+(3n^2-n)d/2) =3na1+3n(3n-1)d/2 所以S3n=3(S2n-Sn) 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) 这里分别用求和公式求出 S3n S2n Sn 得到