已知an是等差数列,前n项和为Sn,求证:S3n=3(S2n-Sn)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:29:52
已知an是等差数列,前n项和为Sn,求证:S3n=3(S2n-Sn)
S3n=3na1+3n(3n-1)d
3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2)
=3na1+3n(3n-1)d
所以S3n=3(S2n-Sn)
再问: 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) 请问这一步怎么来的?为什么用除?
再答: S3n=3na1+3n(3n-1)d/2 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) =3(2na1+(4n^2-2n)d/2-na1-(n^2-n)d/2) =3(na1+(3n^2-n)d/2) =3na1+3n(3n-1)d/2 所以S3n=3(S2n-Sn) 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) 这里分别用求和公式求出 S3n S2n Sn 得到
3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2)
=3na1+3n(3n-1)d
所以S3n=3(S2n-Sn)
再问: 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) 请问这一步怎么来的?为什么用除?
再答: S3n=3na1+3n(3n-1)d/2 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) =3(2na1+(4n^2-2n)d/2-na1-(n^2-n)d/2) =3(na1+(3n^2-n)d/2) =3na1+3n(3n-1)d/2 所以S3n=3(S2n-Sn) 3(S2n-Sn)=3(2na1+2n(2n-1)d/2-na1-n(n-1)d/2) 这里分别用求和公式求出 S3n S2n Sn 得到
已知等差数列an的前n项的和为Sn=48,S2n=60,S3n=?
在等差数列{an}中,已知Sn,S2n,S3n分别表示数列的前n项和,前2n项和,前3n项和.求证:Sn,S2n-Sn,
若等比数列前n项,前2n项,前3n项的和分别为sn s2n s3n 求证sn∧2+s2n∧2=sn(s2n+s3n)
等差数列{an}中,已知前n项和sn=5,前2n项和s2n=20,则求前3n项和s3n
已知等比数列的前n项,前2n项,前3n项.求证Sn^2+S2n^2=Sn(S2n+S3n)
已知一个等差数列的前四项之和为21,后四项之和为67,前n项和为286,Sn=20,S2n=38,求S3n
已知等比数列{an}的前n项和Sn=54,前2n项和S2n=60,则前3n项和S3n=( )
已知等比数列{an}的前n项和Sn=54,S2n=60则S3n=?
已知数列{an}是等差数列.(1)若前四项何为21,后四项和为286,求项数n(2)若Sn=20,S2n=38,求S3n
一个等比数列{an}中,Sn表示前n项和,若Sn=48,S2n=60,则S3n等于?
已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列