设∑为球面x^2+y^2+z^2=1,则对面积的曲面积分∫∫(x^2+y^2+z^2)dS=?
设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=
设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=
设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)
设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x+y+z+1)ds的值 答案是4∏
计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分
球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds
[(x+y)^2+z^2+2yz]dS曲面积分,球面为x^2+y^2+z^2=2x+2z
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
曲面积分设为平面x/4+y/3+z/2=1在第一卦线的部分,则∫∫(1/2x+2/3y+z)dS=
计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分