第二型曲面积分的计算计算曲面积分∫∫x2dudz加y2dxdz加z2dxdy,其中∑是球面x2+y2+z2=1的上半平面
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
设∑为由曲面z=√x2+y2及平面z=1所围成的立体的表面,则曲面积分∫∫ˇ∑(x2+y2)dS=?
计算曲面积分∫∫xzdydz+y^2dxdy,其中积分面是球面x^2+y^2+z^2=a^2第一卦限部分的下侧.
计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分
第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之
计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1
计算曲面积分I=∫∫D(x+|y|)dS,其中曲面D:|x|+|y|+|z|=1
计算曲面积分∫∫D x²yzds,其中区域D是球面x²+y²+z²=4在x≥0,
利用高斯公式计算曲面积分(如图),其中∑为球面x^2+y^2+z^2=a^2的外侧
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2