作业帮 > 数学 > 作业

在四棱锥P-ABCD中,底面ABCD是正方形,PA=PD,PA⊥AB,三角形PAD的面积是1,求在四棱锥中能放入最大球的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:01:52
在四棱锥P-ABCD中,底面ABCD是正方形,PA=PD,PA⊥AB,三角形PAD的面积是1,求在四棱锥中能放入最大球的半径
在四棱锥P-ABCD中,底面ABCD是正方形,PA=PD,PA⊥AB,三角形PAD的面积是1,求在四棱锥中能放入最大球的
过点P分别作AD、BC的垂线,垂足分别是F、E,连接EF
由题意的
∵PA⊥AB,AD⊥AB
∴AB⊥面PAD
∵PA=PD
∴PB=PC
∴E、F分别是BC、AD的中点
∴EF⊥PF
∵△PAD的面积是1
∴△PEF的面积是1
∴PF*EF=2
四棱锥中放入的最大球的半径就是Rt△PEF的内切圆的半径,设为x
则EF*x+PF*x+PE*x=PF*EF=2
∴[EF+PF+√(EF²+PF²)]x=2
∵EF+PF≥√(4EF*PF)=2√2
EF²+PF²≥2EF*PF=4
∴x≤2/(4+2√2)=(2-√2)/2
当EF=PF=√2时取等号
所以,所求最大半径为(2-√2)/2
完毕.