x
根据题意,得 ∵P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2, ∴k1•k2=- b2 a2, 结合|k1k2|= 1 4,得 b2 a2= 1 4,即a2=4b2 ∵b2=a2-c2, ∴a2=4(a2-c2),解得3a2=4c2,得c=
3 2a 因此,椭圆的离心率e= c a=
3 2 故选:C
已知x^2/a^2+y^2/b^2(a>b>0),M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN
已知椭圆x2a2+y2b2=1(a>b>0),M,N是椭圆长轴的两个端点,P是椭圆上除了长轴端点外的任意一点,且直线PM
已知椭圆具有如下性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记
已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN斜率都存在
已知椭圆x2a2+y2b2=1(a>b>0)的离心率是63,过椭圆上一点M作直线MA,MB分别交椭圆于A,B两点,且斜率
X2/a2+y2/b2=1 (a>b>0),M,N是椭圆上两点关于原点对称,P是椭圆上任一点,PM,PN的斜率为K1,K
数学椭圆X2/9+Y2/=1,M,N是椭圆上关于原点对称的两动点,P为椭圆上任意一点,PM,PN的斜率为K1,K2,.
已知椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该
已知P是椭圆x2a2+y2b2=1(a>b>0)上的一个动点,且P与椭圆长轴两个顶点连线的斜率之积为−12,则椭圆的离心
已知双曲线x^2/a^2-y^2/b^2=1.M,N是双曲线上关于原点对称的两点,P是双曲线上任意一点,当直线PM,PN
已知椭圆的方程为x2a2+y2b2=1(a>b>0),过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线
椭圆 x2a2+y2b2=1(a>b>0)上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF
|