在△ABC中,a,b,c是角A,B,C的对边,且COS2B+COSB+COS(A-C)=1.求证a,b,c成等比数列.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 06:15:48
在△ABC中,a,b,c是角A,B,C的对边,且COS2B+COSB+COS(A-C)=1.求证a,b,c成等比数列.
首先,在△ABC中,A+B+C=180度
那么cosB=-cos(A+C),即原式为
cos2B-cos(A+C)+cos(A-C)=1;
由二倍角公式及和差化积公式,得
cos2B=1-2(sinB)^2;
cos(A-C)-cos(A+C)=2sinAsinC;
即原式变为
1-2(sinB)^2+2sinAsinC=1;
即sinAsinC=(sinB)^2;
再由正弦定理sinA/a=sinB/b=sinC/c得
ac=b^2;
因此a.b.c成等比数列
Do you understand?
看来我得给你说明下:
cosa-cosb=-2sin1/2(a+b)*sin1/2(a-b)
cos(A-C)-cos(A+C)=-2sin(2A/2)sin(-2C/2)=2sinAsinC
那么cosB=-cos(A+C),即原式为
cos2B-cos(A+C)+cos(A-C)=1;
由二倍角公式及和差化积公式,得
cos2B=1-2(sinB)^2;
cos(A-C)-cos(A+C)=2sinAsinC;
即原式变为
1-2(sinB)^2+2sinAsinC=1;
即sinAsinC=(sinB)^2;
再由正弦定理sinA/a=sinB/b=sinC/c得
ac=b^2;
因此a.b.c成等比数列
Do you understand?
看来我得给你说明下:
cosa-cosb=-2sin1/2(a+b)*sin1/2(a-b)
cos(A-C)-cos(A+C)=-2sin(2A/2)sin(-2C/2)=2sinAsinC
在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cosB+cos(A-C)=1,则( )
在△ABC中,若a.b.c分别为A.B.C的对边,且cos2B+cosB+cos(A-C)=1,求证b平方=ac
已知在△ABC中,a,b,c分别是A,B,C的对边,S为△ABC的面积,且2cos的平方B=cos2B+2cosB.求角
1.三角形ABC中,若abc为角A角B角C的对边,且cos2B+cosB+cos(A-C)=1 则有
在三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=3/4.
在三角形ABC中,A,B,C的对边分别是a,b,c,且cosB/cos=-(b/2a+c) 求角B
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.
在三角形ABC中,角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列且cosB=3/4.
在△ABC中,若sin^B=sinAsinC,则cos2B+COSB+COS(A-C)=
在三角形ABC中,内角A,B,C的对边分别为a,b,c已知a,b,c成等比数列,且cosB=3/4
在∠ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.
三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=3/4.