作业帮 > 数学 > 作业

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 16:43:26
使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且 1x1+1x2=-14,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.
使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零
(1)当m=0时,该函数的零点为
6
和-
6

(2)令y=0,得△=(-2m)2-4[-2(m+3)]=4(m+1)2+20>0
∴无论m取何值,方程x2-2mx-2(m+3)=0总有两个不相等的实数根.
即无论m取何值,该函数总有两个零点.
(3)依题意有x1+x2=2m,x1x2=-2(m+3)

1
x1
+
1
x2
=-
1
4
,
解得m=1.
∴函数的解析式为y=x2-2x-8.
令y=0,解得x1=-2,x2=4
∴A(-2,0),B(4,0)
作点B关于直线y=x-10的对称点B′,连接AB′,
则AB’与直线y=x-10的交点就是满足条件的M点.
易求得直线y=x-10与x轴、y轴的交点分别为C(10,0),D(0,-10).
连接CB′,则∠BCD=45°
∴BC=CB’=6,∠B′CD=∠BCD=45°
∴∠BCB′=90°
即B′(10,-6)
设直线AB′的解析式为y=kx+b,则
-2k+b=010k+b=-6
,
解得:k=-
1
2
,b=-1;
∴直线AB′的解析式为y=-
1
2
x-1,
即AM的解析式为y=-
1
2 x-1.
再问: 第三问能搞好一点吗
再答: 忘说了,参考http://www.jyeoo.com/math/ques/detail/6407e7a6-6991-4b30-b2cc-fb3f36e767e4