作业帮 > 数学 > 作业

若函数y=x3-32x2+a在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是 ___ .

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:12:12
若函数y=x3-
3
2
若函数y=x3-32x2+a在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是 ___ .
由已知,f′(x)=3x2-3x,有3x2-3x≥0得x≥1或x≤0,
因此当x∈[1,+∞),(-∞,0]时f(x)为增函数,在x∈[0,1]时f(x)为减函数,
又因为x∈[-1,1],
所以得当x∈[-1,0]时f(x)为增函数,在x∈[0,1]时f(x)为减函数,
所以f(x)max=f(0)=a=3,故有f(x)=x3-
3
2x2+3
所以f(-1)=
1
2,f(1)=
5
2
因为f(-1)=
1
2<f(1)=
5
2,所以函数f(x)的最小值为f(-1)=
1
2.
故答案为:
1
2.