已知a,b,c均为正数,a^2+b^2+c^2=1,证明(a+b+c)^3≤3,
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
设A.B.C均为正数,求证c/(a+b)+a/(b+c)+b/(c+a)>=3/2
已知a.b.c为正数,证明:a^2*b^2*c^2>=a^(b+c)*b^(a+c)*c^(a+b)
已知a,b,c均为正数,证明:a2+b2+c2+( 1 a + 1 b + 1 c )2≥6 根号3 ,并确定a,b,c
已知a.b.c是三个正数,证明:a^2*b^2*c^2>=a^b+c*b^a+c*c^a+b
已知a,b,c均为正数 证明a^2+b^2+c^2+(1/a+1/b+1/c)^2大于等于六倍根号三
已知a,b,c都是正数 a+b+c=1 求证a^3+b^3+c^3>=(a^2+b^2+c^2)/3
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
高二不等式证明(1)已知a,b,c,是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a
高二均值不等式,已知a,b,c都为正数,求证:(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))>=9/2
已知a,b,c是不全相等的正数.证明:(a^2b+b^2a)(a^2c+c^2a)(b^2c+c^2b)>8a^3b^3
已知a b c都是正数,证明a/(b+2c)+b/(c+2a)+c/(a+2b)≥1