已知正整数x和y满足2x²-1=y∧15 证明,若x>1,则x可被5整除
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 05:16:01
已知正整数x和y满足2x²-1=y∧15 证明,若x>1,则x可被5整除
应该是2005年俄罗斯数学奥林匹克10年级第7题.
设t = y^5,将方程写为2x² = 1+t³ = (1+t)(1-t+t²).
由1-t+t² = (1+t)(t-2)+3,可知(1+t,1-t+t²) = 1或3.
若(1+t,1-t+t²) = 1,由(1+t)(1-t+t²) = 2x²且1-t+t²为奇数可知1-t+t²是完全平方数.
但由x > 1,有t > 1,(t-1)² < 1-t+t² < t²,即1-t+t²夹在两相邻完全平方数之间,矛盾.
因此(1+t,1-t+t²) = 3,3 | 1+t = 1+y^5,可知y ≡ -1 (mod 3).
设s = y³,将方程写为2x² = 1+s^5 = (1+s)(1-s+s²-s³+s^4).
由1-s+s²-s³+s^4 = (1+s)(s³-2s²+3s-4)+5,可知(1+s,1-s+s²-s³+s^4) = 1或5.
若(1+s,1-s+s²-s³+s^4) = 1,由(1+s)(1-s+s²-s³+s^4) = 2x²且1-s+s²-s³+s^4为奇数,
可知1-s+s²-s³+s^4是完全平方数.
然而,由y ≡ -1 (mod 3),s = y³ ≡ -1 (mod 3),代入得1-s+s²-s³+s^4 ≡ 5 ≡ -1 (mod 3),
不可能为完全平方数,矛盾.
因此(1+s,1-s+s²-s³+s^4) = 5,有5 | s+1 | 2x²,故5 | x,所证结论成立.
设t = y^5,将方程写为2x² = 1+t³ = (1+t)(1-t+t²).
由1-t+t² = (1+t)(t-2)+3,可知(1+t,1-t+t²) = 1或3.
若(1+t,1-t+t²) = 1,由(1+t)(1-t+t²) = 2x²且1-t+t²为奇数可知1-t+t²是完全平方数.
但由x > 1,有t > 1,(t-1)² < 1-t+t² < t²,即1-t+t²夹在两相邻完全平方数之间,矛盾.
因此(1+t,1-t+t²) = 3,3 | 1+t = 1+y^5,可知y ≡ -1 (mod 3).
设s = y³,将方程写为2x² = 1+s^5 = (1+s)(1-s+s²-s³+s^4).
由1-s+s²-s³+s^4 = (1+s)(s³-2s²+3s-4)+5,可知(1+s,1-s+s²-s³+s^4) = 1或5.
若(1+s,1-s+s²-s³+s^4) = 1,由(1+s)(1-s+s²-s³+s^4) = 2x²且1-s+s²-s³+s^4为奇数,
可知1-s+s²-s³+s^4是完全平方数.
然而,由y ≡ -1 (mod 3),s = y³ ≡ -1 (mod 3),代入得1-s+s²-s³+s^4 ≡ 5 ≡ -1 (mod 3),
不可能为完全平方数,矛盾.
因此(1+s,1-s+s²-s³+s^4) = 5,有5 | s+1 | 2x²,故5 | x,所证结论成立.
已知正整数x,y满足2∧x 49=y,求x,y值
已知x,y为正整数,且满足2x^2+3y^2=4x^2y^2+1;则x^2+y^2=___
已知:11整除2X+7Y,证明:11整除5X+Y
已知X和Y满足3X+4Y=2,X-Y-1/7
已知X,Y,满足(X+3Y)(X-3Y)=-10(Y^2-6/5)和2X(Y-1)+4(1/2X-1)=0
已知x,y是正整数,并且满足条件xy+x+y+1=71,x²y+xy²=880,求x²+y
已知正实数x,y满足x+2y=4,则1x+1y
已知x,y满足-5|x-2y|+8|y-1\2|=0则x=( ),y=( )
已知实数x y满足x²+y²+2x-4y+1=0 求下列最大值和最小值,(1)y/x-4 (2)2x
已知:正整数X、Y满足 5/9<x/y<3/5,则x-y的最小值是__________
已知实数x,y满足5x²+2y²+1=6xy+4x-2y,则x²-xy+2000y
已知x,y满足约束条件:x-y+1>=0,x+y-2>=0,x