双曲线的性质及其应用设双曲线的中心在原点,准线平行与X轴,离心率(根号5)/2,且点P(0,5)到此双曲线上的点的最近距
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 16:37:18
双曲线的性质及其应用
设双曲线的中心在原点,准线平行与X轴,离心率(根号5)/2,且点P(0,5)到此双曲线上的点的最近距离为2,求双曲线的方程.
已知双曲线X*X-Y*Y/2=1与点P(1,2),过P点作直线L与双曲线交于A、B两点,若P点为AB中点
1求直线AB的方程
2若Q(1,1),证明不存在以Q为中点的弦
设双曲线的中心在原点,准线平行与X轴,离心率(根号5)/2,且点P(0,5)到此双曲线上的点的最近距离为2,求双曲线的方程.
已知双曲线X*X-Y*Y/2=1与点P(1,2),过P点作直线L与双曲线交于A、B两点,若P点为AB中点
1求直线AB的方程
2若Q(1,1),证明不存在以Q为中点的弦
1)
因为 准线平行与X轴
所以 焦点在Y轴上
当P在双曲线内时
由 P(0,5)到此双曲线上的点的最近距离为2
得 a=3
在由 离心率(根号5)/2
得出c值
当P在双曲线外时
由 P(0,5)到此双曲线上的点的最近距离为2
得a=7
在由 离心率(根号5)/2
得出c值
由此求出两种情况下的双曲线的方程.
2)
(1)
由点P(1,2)
设l方程为y-2=k(x-1)
与X*X-Y*Y/2=1联立方程组
得一个带k与x的方程
用韦达定理求出x1+x2的值
因为P点为AB中点
则 x1+x2=xp
即 x1+x2=1
由此求出k的值
即 AB方程可求出
(2)
由Q(1,1)
设以Q为中点的弦的方程为y-1=k(x-1)
与X*X-Y*Y/2=1联立方程组
得一个带k与x的方程
求其判别式
若大于零则成立,小于等于零,则不成立
明白了吗?
因为 准线平行与X轴
所以 焦点在Y轴上
当P在双曲线内时
由 P(0,5)到此双曲线上的点的最近距离为2
得 a=3
在由 离心率(根号5)/2
得出c值
当P在双曲线外时
由 P(0,5)到此双曲线上的点的最近距离为2
得a=7
在由 离心率(根号5)/2
得出c值
由此求出两种情况下的双曲线的方程.
2)
(1)
由点P(1,2)
设l方程为y-2=k(x-1)
与X*X-Y*Y/2=1联立方程组
得一个带k与x的方程
用韦达定理求出x1+x2的值
因为P点为AB中点
则 x1+x2=xp
即 x1+x2=1
由此求出k的值
即 AB方程可求出
(2)
由Q(1,1)
设以Q为中点的弦的方程为y-1=k(x-1)
与X*X-Y*Y/2=1联立方程组
得一个带k与x的方程
求其判别式
若大于零则成立,小于等于零,则不成立
明白了吗?
双曲线的中心在原点 准线平行x轴 离心率为二分之根号五 若p(0,5)到双曲线上的点最近距离是2求双曲线方程
有关双曲线的题目是这样的设双曲线中心是坐标原点,准线平行于坐标轴,离心率为根号五/2,已知P(2,5)在双曲线上,求双曲
双曲线的中心在原点,焦点在x轴上,离心率为e=√5/2,点p(0,1)到此双曲线上的点的最近距离是2/5·√30
双曲线中心在原点,焦点在y 轴上,离心率为根号5除以2,已知p(0,5)到双曲线上的点最近距离2,求双曲线方程
双曲线中心在原点,焦点在y 轴上,离心率为根号5除以2,已知p(5,0)到双曲线上的点最近距离2,求双曲线方
设双曲线的中心在原点,准线平行于x轴,离心率为52
双曲线的中心在原点,一条渐近线与直线 根号3 x-y+2=0平行,若点(2,3)在双曲线上,求双曲线方程
双曲线的中心在原点,一条渐近线与直线 根号3 x-y+2=0平行,若点(2,3)在双曲线上,求双曲线方程
已知中心在原点,1、A2在X轴上,离心率e=根号21/3的双曲线过点p(6,6).(1)求双曲线方...
双曲线的中心在原点,离心率=根号2,且过点(4,-根号10)求双曲线方程
已知双曲线的中心在原点,焦点在坐标轴上,离心率为根号2,且过点(4,-根号10),求双曲线的方程
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为根号2,且过点(4,-根号10).(1)求双曲线方程