作业帮 > 数学 > 作业

若整数p、q均为奇数,则二次方程x^2+px+q=0必无有理数根,从而P^2-4q不是完全平方,证明此命题

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 22:11:59
若整数p、q均为奇数,则二次方程x^2+px+q=0必无有理数根,从而P^2-4q不是完全平方,证明此命题
若整数p、q均为奇数,则二次方程x^2+px+q=0必无有理数根,从而P^2-4q不是完全平方,证明此命题
对于整系数且二次项系数等于1的这种一元二次方程,根的有理性完全取决于判别式是不是完全平方,这个就不用多解释了.假设p^2 - 4q是完全平方,用反证法推出矛盾.
设k^2 = p^2 - 4q,k为正整数.于是有q = (p + k)(p - k)/4.
若k为偶数,则p + k和p - k都是奇数,从而乘积为奇数,不可能被4整除.
若k为奇数,则p + k和p - k都是偶数,设p = 2m + 1,k = 2n + 1,其中m,n为整数.于是可得到
q = (m + n + 1) (m - n).容易证明,m + n + 1和m - n中总有一个是偶数,故而q为偶数,同题设矛盾.