如图,已知以Rt△ABC的直角边AB为直径做圆O,与斜边AC交于点D,E为BC边的中点,连接DE. (1)求证:DE是
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/20 12:03:05
如图,已知以Rt△ABC的直角边AB为直径做圆O,与斜边AC交于点D,E为BC边的中点,连接DE. (1)求证:DE是
如图,已知以Rt△ABC的直角边AB为直径做圆O,与斜边AC交于点D,E为BC边的中点,连接DE. (1)求证:DE是⊙O的切线; (2)连接OE、AE,当∠CAB为何值时,四边形AODE是平行四边形,并说明理由; (3)在(2)的条件下,求sin∠CAE的值. |
(1)通过证明∠ODE=90°,OD⊥DE,得DE是⊙O的切线 (2) 当∠CAB=45°时,四边形AODE是平行四边形 (3)
试题分析:(1)证明:连接OD、BD.
∵AB是⊙O的直径,∴∠ADB=90°,
∵∠ADB+∠BDC=180°,∴∠BDC=90°,
∵E为BC边的中点,∴BE=DE=CE= BC
∴∠BDE=∠DBE, ∵OB="BD," ∴∠OBD=∠ODB,
又∵∠ABC=∠OBD+∠DBE=90°,
∴∠ODB+∠BDE=90°,即∠ODE=90°,
∴OD⊥DE,∴DE是⊙O的切线.
(2)当∠CAB=45°时,四边形AODE是平行四边形.
又∵∠ABC =90°,∴∠CAB=∠C =45°,∴AB=BC.
同理可得BD="CD," ∵∠BDC=90°,E为BC边的中点,
∴DE⊥BC, ∴∠CED=∠ABC =90°, ∴DE∥AB.
又∵DE= BC,OA= AB, ∴DE=OA.
∴四边形AODE是平行四边形.
(3)过点E作EF⊥AC交AC于点F,设EF=x,则CE=BE= x,BC=AB=2 x,
在Rt△ABE中,AE= = x
在Rt△AFE中,sin∠CAE= = =
点评:本题考查直线与圆相切,平行四边形,掌握直线与圆相切的概念和性质,并能判断直线与圆相切,掌握平行四边形的判定方法,会判定一个四边形是平行四边形
试题分析:(1)证明:连接OD、BD.
∵AB是⊙O的直径,∴∠ADB=90°,
∵∠ADB+∠BDC=180°,∴∠BDC=90°,
∵E为BC边的中点,∴BE=DE=CE= BC
∴∠BDE=∠DBE, ∵OB="BD," ∴∠OBD=∠ODB,
又∵∠ABC=∠OBD+∠DBE=90°,
∴∠ODB+∠BDE=90°,即∠ODE=90°,
∴OD⊥DE,∴DE是⊙O的切线.
(2)当∠CAB=45°时,四边形AODE是平行四边形.
又∵∠ABC =90°,∴∠CAB=∠C =45°,∴AB=BC.
同理可得BD="CD," ∵∠BDC=90°,E为BC边的中点,
∴DE⊥BC, ∴∠CED=∠ABC =90°, ∴DE∥AB.
又∵DE= BC,OA= AB, ∴DE=OA.
∴四边形AODE是平行四边形.
(3)过点E作EF⊥AC交AC于点F,设EF=x,则CE=BE= x,BC=AB=2 x,
在Rt△ABE中,AE= = x
在Rt△AFE中,sin∠CAE= = =
点评:本题考查直线与圆相切,平行四边形,掌握直线与圆相切的概念和性质,并能判断直线与圆相切,掌握平行四边形的判定方法,会判定一个四边形是平行四边形
如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,E为BC上中点,连接DE
已知,以直角三角形ABC的直角边AB为直径的圆O,与斜边AC交于点D,E为BC边上的中点,连接DE,求1:求证,DE是圆
1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线
初中数学题 急!以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.1.证DE是切线2
如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:(1)DE是圆O的切线
以RT△ABC的直角边AC为直径做○O交斜边AB于D,E是另一边BC的中点 求证DE是圆O的切线
如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:DE是圆O的切线
以Rt△ABC的直角边AB为直径作圆O,交斜边BC于点D,OE∥BC,交AC于点E.求证:DE是圆O的切线.
(2010•扬州二模)如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
如图,在RT△ABC中,∠ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE