将7个相同大小的小球放入4个不同的箱子中
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:04:55
将7个相同大小的小球放入4个不同的箱子中
(1)若箱子不空,有多少种放法?
(2)若允许有空箱,有多少种放法?
应该怎么分析啊?
答案是(1)20种 (2)120种
(1)若箱子不空,有多少种放法?
(2)若允许有空箱,有多少种放法?
应该怎么分析啊?
答案是(1)20种 (2)120种
(1)
用插棍法.7个球如下,4个箱子由3根棍子分开
例:O | O | O O | O O O
因为箱子不空,所以棍子一共有7-1=6个位置可以插.
C(3,6)=6*5*4/(3*2*1)=20(种)
(2)
还是用插棍法
因为允许有空箱子,所以每根棍子和每个箱子各占一个位置.
例:O | O O O || O O O
则:箱子加棍子一共有10个位置,棍子从中任选3个.
C(3,10)=10*9*8/(3*2*1)=120(种)
-----------------
插棍法是排列组合问题的一种很重要的技巧性方法,上述两个问题刚好含盖了插棍法的2种类型.
插棍法是把排列组合问题转化为球和棍子的问题.
两棍之间球的个数就是箱子内球的个数,所以棍子数是箱子数减1.
棍子占不占位置的关键就在于能否空箱,能就占位,不能就不占位.
除了往箱子放小球外,一般还有一类问题也是这么做的:
x和y为正整数,x+y=10,求解的组数.
10就相当于10个小球,x和y相当于两个箱子.用哪种插棍法的关键就在于x和y是自然数还是正整数.
其他的用插棍法的题目一般都会和上述的两种题目类似的了.
一定要掌握啊!
用插棍法.7个球如下,4个箱子由3根棍子分开
例:O | O | O O | O O O
因为箱子不空,所以棍子一共有7-1=6个位置可以插.
C(3,6)=6*5*4/(3*2*1)=20(种)
(2)
还是用插棍法
因为允许有空箱子,所以每根棍子和每个箱子各占一个位置.
例:O | O O O || O O O
则:箱子加棍子一共有10个位置,棍子从中任选3个.
C(3,10)=10*9*8/(3*2*1)=120(种)
-----------------
插棍法是排列组合问题的一种很重要的技巧性方法,上述两个问题刚好含盖了插棍法的2种类型.
插棍法是把排列组合问题转化为球和棍子的问题.
两棍之间球的个数就是箱子内球的个数,所以棍子数是箱子数减1.
棍子占不占位置的关键就在于能否空箱,能就占位,不能就不占位.
除了往箱子放小球外,一般还有一类问题也是这么做的:
x和y为正整数,x+y=10,求解的组数.
10就相当于10个小球,x和y相当于两个箱子.用哪种插棍法的关键就在于x和y是自然数还是正整数.
其他的用插棍法的题目一般都会和上述的两种题目类似的了.
一定要掌握啊!
排列组合:将3个不同的小球放入4个盒子中,则不同放法数种有
将3个相同的小球放入A、B、C三个盒子中,共有多少种不同的放法?
将3个相同小球放入ABC三个盒子中共有多少种不同的放法 将3个相同小球放入ABC三个
有7个相同的小球放入4个不同的盒子中,每个盒子中至少放一个球,则共有( )种不同的放法.
将3个不同的小球放入4个盒子中,则不同放法种数有______.
7个不同的球任意的放入4个相同的盒子中,每个盒子至少有一个小球的不同方法共有?
排列组合.将3个相同的小球随机放入4个盒子里面,求三个小球分别放在不同的三个盒子中的概率.
将颜色互不相同的4个小球放入编号分别为1,2,3的三个盒子中,每个盒子至多放入两个小球,则不同的结果有多少种
将4个不同颜色的小球,全部放入三个不同的盒子中,则不同的放法有多少种?
将9个大小相同的小球放入编号为1,2,3的三个盒子中,要求每个盒子内的球数不小于该盒子的编号数,一共有______种不同
把11个相同的小球放入7个同样的盒子中,每个盒子中至少有1个球,共有多少种不同的方法?
12个相同的小球,放入1,2,3,4个有编号的箱子里(1每个箱子至少有一个的放法有多少种?(2)箱子可以为空的放法有多少