证明一个不等式谢谢啊证明(1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:07:24
证明一个不等式谢谢啊
证明
(1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)
证明
(1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)
用数学归纳法最简单:
证明:当 n = 1 时,1+n/2=3/2 ,1+1/2+1/3+……+1/2^n=3/2 ,1/2+n=3/2 ,显然不等式成立.
令 n = k 时,不等式成立
即,1+k/2 ≤ 1+1/2+1/3+……+1/2^k ≤ 1/2+k
令 f(k) = 1+1/2+1/3+……+1/2^k
有 f(k+1) = f(k)+1/(2^k+1)+1/(2^k+2)+……+1/2^(k+1)
∵ 1/(2^k+1) ≥ 1/2^(k+1) ,1/(2^k+2) ≥ 1/2^(k+1) ,……,1/2^(k+1) ≥ 1/2^(k+1)
∴ f(k+1) ≥ f(k)+1/2^(k+1)+1/2^(k+1)+.+1/2^(k+1) [共2^k个]
∴ f(k+1) ≥ f(k)+[1/2^(k+1)] * 2^k = f(k) + 1/2 ≥ 1+k/2 + 1/2 = 1+ (k+1)/2
同理 ∵ 1/(2^k+1) ≤ 1/2^k ,1/(2^k+2) ≤ 1/2^k ,…… ,1/2^(k+1) ≤ 1/2^k
∴ f(k+1) ≤ f(k)+ (1/2^k) * 2^k = f(k) +1 ≤ 1/2 + (k + 1)
所以 1+ (k+1)/2 ≤ f(k+1) = [1+1/2+1/3+……+1/2^(k+1) ] ≤ 1/2 + (k + 1)
综上 (1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)对于n≥1均成立.
证明:当 n = 1 时,1+n/2=3/2 ,1+1/2+1/3+……+1/2^n=3/2 ,1/2+n=3/2 ,显然不等式成立.
令 n = k 时,不等式成立
即,1+k/2 ≤ 1+1/2+1/3+……+1/2^k ≤ 1/2+k
令 f(k) = 1+1/2+1/3+……+1/2^k
有 f(k+1) = f(k)+1/(2^k+1)+1/(2^k+2)+……+1/2^(k+1)
∵ 1/(2^k+1) ≥ 1/2^(k+1) ,1/(2^k+2) ≥ 1/2^(k+1) ,……,1/2^(k+1) ≥ 1/2^(k+1)
∴ f(k+1) ≥ f(k)+1/2^(k+1)+1/2^(k+1)+.+1/2^(k+1) [共2^k个]
∴ f(k+1) ≥ f(k)+[1/2^(k+1)] * 2^k = f(k) + 1/2 ≥ 1+k/2 + 1/2 = 1+ (k+1)/2
同理 ∵ 1/(2^k+1) ≤ 1/2^k ,1/(2^k+2) ≤ 1/2^k ,…… ,1/2^(k+1) ≤ 1/2^k
∴ f(k+1) ≤ f(k)+ (1/2^k) * 2^k = f(k) +1 ≤ 1/2 + (k + 1)
所以 1+ (k+1)/2 ≤ f(k+1) = [1+1/2+1/3+……+1/2^(k+1) ] ≤ 1/2 + (k + 1)
综上 (1+n/2)≤1+1/2+1/3+……+1/2^n≤(1/2+n)对于n≥1均成立.
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明不等式 1+2n+3n
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3
用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)> 13/24
数学不等式证明:n>2时..logn(n-1)
证明1/(n+1)+1/(n+2)+1/(n+3)+……+1/(n+n)
证明n(n+1)(n+2)(n+3)(n+4)是一个完全平方数
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
证明不等式 (n+1)/3
用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)>13/24