作业帮 > 数学 > 作业

设m,n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离不小

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 00:05:41
设m,n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离不小于|2t+n|,求m,n的值
因为一元二次方程x2+(3-mt)x-3mt=0的两根分别为mt和-3,所以二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离为|mt+3|.
由题意,|mt+3|≥|2t+n|,即(mt+3)2≥(2t+n)2,即(m2-4)t2+(6m-4n)t+9-n2≥0.
由题意知,m2-4≠0,且上式对一切实数t恒成立,
所以
m2-4>0
△=(6m-4n)2-4(m2-4)(9-n2)≤0

m>2
4(mn-6)2≤0

m>2
mn=6
,
所以
m=3
n=2

m=6
n=1.
那个原题说是与x轴的两个交点的距离,既然两个交点,那么判别式应该大于0,也就是(3-mt)方+12mt大于零,解出来m不等于-3/t,原题说对一切t成立,那么向刚才解得的不等式中代是3的因数的t值,可得到m不等于1,-1,3,-3,那么最终答案应该就1个解,请帮我看看我错在哪了,我感觉自己就是对的
设m,n为正整数,且m≠2,如果对一切实数t,二次函数y=x2+(3-mt)x-3mt的图象与x轴的两个交点间的距离不小
看看吧如果有其他不懂的初中数学题,可以去求解答网上搜索题目的解题过程和思路