3(2²+1)(2^4+1)(2^8+1)(2^16+1
计算:3(2²+1)(2^4+1)(2^8+1)(2^16+1)
计算(1+2)(1+2²)(1+2^4)(1+2^8)(1+2^16)
(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1=
1² 2² 4² 8² 16² 32² 64² 1
(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1) 结果保留幂形式
计算3(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1的值
计算:3*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
已知数列1-1/2,2-1/4,3-1/8、4-1/16、.求S10
计算2/2²-1+2/4²-1+2/6²-1+2/8²-1+2/10²
1²-2²+3²-4²+5²-6²+7²-8
计算:8(3^2+1)(3^4+1)(3^8+1)(3^16+1)+1
计算:2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1