作业帮 > 数学 > 作业

设函数f(x)=acosx+b的最大值是1,最小值是-3,试确定g(x)=bsin(ax+π/3)周期

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:44:13
设函数f(x)=acosx+b的最大值是1,最小值是-3,试确定g(x)=bsin(ax+π/3)周期
设函数f(x)=acosx+b的最大值是1,最小值是-3,试确定g(x)=bsin(ax+π/3)周期
∵f(x)=acosx+b,-1≤cosx≤1
∴f(x)min = -|a|+b,f(x)max = |a| +b
最大值是1,最小值是-3
|a| +b = 1 ...(1)
-|a|+b = -3 ...(2)
(1)-(2)得:2|a| = 4,|a| = 2
(1)+(2)得:2b = -2,b = -1
g(x) = bsin(ax+π/3)
最小正周期 = 2π/|a| = 2π/2 = π